
Smokers’ brains compute, but ignore, a fictive error
signal in a sequential investment task
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Addicted individuals pursue substances of abuse even in the clear presence of positive outcomes that may be foregone and

negative outcomes that may occur. Computational models of addiction depict the addicted state as a feature of a valuation

disease, where drug-induced reward prediction error signals steer decisions toward continued drug use. Related models admit

the possibility that valuation and choice are also directed by ‘fictive’ outcomes (outcomes that have not been experienced) that

possess their own detectable error signals. We hypothesize that, in addiction, anomalies in these fictive error signals contribute to

the diminished influence of potential consequences. Using a simple investment game and functional magnetic resonance imaging

in chronic cigarette smokers, we measured neural and behavioral responses to error signals derived from actual experience and

from fictive outcomes. In nonsmokers, both fictive and experiential error signals predicted subjects’ choices and possessed

distinct neural correlates. In chronic smokers, choices were not guided by error signals derived from what might have happened,

despite ongoing and robust neural correlates of these fictive errors. These data provide human neuroimaging support for

computational models of addiction and suggest the addition of fictive learning signals to reinforcement learning accounts of

drug dependence.

In healthy learners, positive prediction errors generated from actual
experience indicate that a state is ‘better than expected’ and have been
shown to bias actions, an observation interpreted as an attempt by
reward-harvesting mechanisms to maximize the amount of reward
obtained over time1–6. The temporal difference (TD) model of rein-
forcement learning associates these experiential prediction errors with
phasic changes in dopaminergic activity that tracks ongoing differences
between expected and actually experienced rewards7–11. In this frame-
work, transient increases in dopamine induced by addictive drugs12,13

have been posited to generate invariably positive experiential reward-
prediction errors, thus exaggerating the value of drug-induced states
and reinforcing drug-seeking behavior1.

However, dopamine increase during drug use is not sufficient for
addiction14. One key characteristic of addicted individuals is that they
pursue and consume subjective rewards even in the clear presence of
positive outcomes that might be foregone or negative outcomes that
might occur15 as a consequence of their actions. Such data strongly
suggest that addicts have an impaired capacity to use possible outcomes
to intervene on habitual drug-taking. One hypothesis is that chronic
drug-takers have a diminished capacity in their nervous system for
computing the appropriate control signals that guide behavior based
on fictive outcomes. Specifically, error signals for such fictive outcomes
may not be produced in the brains of addicts. An alternative hypothesis
is that an addicted brain does produce error signals related to fictive
outcomes, but the influence of these signals on actual behavioral choice
is substantially diminished. Naturally, a myriad of intermediate

possibilities also exist, and the role of perturbed learning signals as
antecedents or consequences of addiction remains an open question. In
this paper, we sought to distinguish between the aforementioned two
basic hypotheses by comparing nonsmokers and chronic smokers in an
experiment designed to probe the impact of experiential and fictive
errors. These error signals are those derived from actual experience and
from outcomes that were not experienced, respectively. The possibility
that these ideas can be tested has been suggested by recent work
showing that fictive error signals guide behavior and can be tracked in
healthy human brains using a simple investment game (see schematic
representation in Fig. 1a,b)2.

As was done previously2, we used functional magnetic resonance
imaging (fMRI) and a sequential gambling task that assesses ongoing
reward expectations, rewards gained and the ensuing difference
between fictive rewards that could have been gained and those that
are actually gained. In this game, subjects view price histories from
historical stock markets and choose percentages of an initial $100
endowment to invest in each segment of ongoing market fluctuations
(see Fig. 1b and Methods for complete task description). Each market
comprised 20 sequential investment decisions, and all subjects played
ten active markets. After each investment, the current portfolio amount
and percentage market change are updated and shown to the subject
(Fig. 1b).

Thirty-one chronic cigarette smokers participated in the investment
game on 2 separate days of fMRI scanning: a ‘sated’ day and an
‘unsated’ day (see Methods for complete participant information). For
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the sated session, subjects were asked to smoke as usual throughout the
day and also to smoke until satiated on arrival at the laboratory. For the
unsated session, subjects were asked to refrain from smoking after
midnight before the experimental session. A measure of exhaled carbon
monoxide was obtained from all smokers as an objective proxy of
satiety and blood nicotine saturation16,17. The smokers’ behavioral and
neural data were compared both across sated and unsated sessions and
relative to a group of 31 nonsmokers (a subset of participants from our
previous work2); the groups are hereafter referred to as sated smokers,
unsated smokers and nonsmokers, respectively.

The market investment game used historical stock markets and, as
such, was designed to elicit strategic behavioral choices in a context in
which employing specific strategies should not affect the final outcome

of the game. Implementing such a task enabled us to parse the
contributions of fictive and experiential learning signals on behavioral
choice, separate from the impact that differential monetary earnings
might confer on neural and behavioral responses. As would be expected
of naive investors in real-world markets, participants across groups did
not differ in average total earnings in the game (Fig. 1c).

RESULTS

Responses to error signals derived from fictive outcomes

To assess the impact of fictive error signals on subjects’ behavior, we
quantified fictive error over gains (f +; signals derived from what might
have happened) as the difference between the maximum possible
reward (equal to the positive market return, r+

t ) and the actual reward
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Figure 2 Smokers’ and nonsmokers’ responses to error signals derived from

fictive outcomes. Fictive error over gains was quantified as the ongoing

difference between the maximum possible gain that could have occurred at

time t and the actual gain at time t, f + ¼ (1 � r+
t ) – (bt r

+
t ). Here, r+

t is the
relative positive change in the market at time t, and bt is the bet placed at

time t. In nonsmokers, multiple regression analyses on key market and

behavioral variables showed a negative coefficient on the actual gain (bt r
+
t )

and concurrently a positive coefficient on the maximum fictive gain (1 � r+
t ),

in agreement with previous work showing that the fictive error is a major

predictor of next bets on this task (Supplementary Table 1)2. (a) Smokers’

behavior was not guided by fictive error signals. The behavioral regressions

also showed that the negative correlation between actual gain and next bet,

as seen in nonsmokers, reduced to no correlation in smokers, thus

demonstrating a disrupted behavioral influence of the fictive error on

behavioral choice for the smoker group. The bar plot depicts normalized

mean beta coefficients and s.e.m. for the actual gain term predicting

subjects’ next bets (beta for bt r
+
t , normalized to the nonsmoker coefficient,

which carries a negative value; Supplementary Table 1). This gain term is the

part of the fictive error that loses its influence on the next bet in smokers.

Only the nonsmoker beta coefficient for the actual gain was significantly

different from zero (*** indicates P o 0.0001), whereas the actual gain had

no influence on the next bet for the unsated (P 4 0.24) and sated smokers
(P 4 0.11). The complete regression table is presented in Supplementary

Table 1. (b) In nonsmokers and both smoker groups, robust neural response

to fictive error was seen in bilateral caudate. Thresholded SPM2 t-statistic

maps of the neural fictive error regressor are shown here. In contrast with the absent behavioral influence of fictive error in smokers, the neural response to

fictive error was seen in all three groups, regardless of smoking status (P o 0.001, uncorrected; cluster size Z5, random effects analysis; n ¼ 31 nonsmokers,

n ¼ 31 unsated smokers and n ¼ 31 sated smokers; y ¼ 4). The complete activation table is presented in Supplementary Table 3.

Figure 1 Schematic representation of fictive

error and total earnings on the market task.

(a) Schematic representation of the state space

dynamics of reward processing using actual and

fictive experience. A learner starts in the state St

(represented by the center dark circle), takes the

action at, receives reward rt and transitions to

state St+1 (represented by the top red circle). This
is the learner’s actual experience. The learner can

gain additional valuable information about the

environment from fictive experience, or what

might have been experienced had the learner

taken other actions (light arrows) and received

alternate rewards r̂t (light circles). (b) Schematic

representation of the market task and

measurement of reward expectations, rewards

gained and fictive outcomes that might have been. The y axis depicts the market price and the x axis represents time. Each investment decision or bet (bt,

indicated by the gray slider bar at bottom center) in the game is a proxy for the subjects’ reward expectations at time t. On submitting an investment decision,

the subsequent piece of market history, indicated by the black trace, is revealed; the incremental change relative to the prior market price is the market return

(rt). Fictive error over gains, generated from rewards that might have been earned on positive market fluctuations, is computed as the difference between the

maximum possible gain (blue trace) and the actual gain, f + ¼ (1 � r+
t ) – (bt r

+
t ). After each investment, both the current portfolio amount (here, $146) and

percentage market fluctuation (here, –4.26%) were updated and displayed to the subject. (c) Final monetary earnings in the investment game. All participants

were given an initial endowment of $100 to invest in the market game. The bar plots depict mean and s.e.m. of final monetary earnings in each group.

Smokers and nonsmokers did not differ in their final portfolios.
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or gain at the market fluctuation at each time (t). In this case, gain is
equal to the product of a player’s bet (bt) and the positive market
return, r+

t , and the resulting fictive error is f + ¼ ð1 � r+
t Þ � ðbtr+

t Þ.
As such, the fictive error measures the ongoing difference between the
maximum that could have been gained, 1 � r+

t , and what was
actually gained, bt � r+

t , and is exactly the fictive error signal previously
identified to strongly guide the bets of normal players2. We focused on
fictive errors in the gain domain of our market task to assess sensitivity
to foregone positive outcomes, operationalized as what each
subject could have earned, but did not earn, despite a positive
market fluctuation.

Multiple regression analyses of players’ next bets (bt+1) were carried
out against the following key positive and negative2,18 market and
behavioral variables: previous bet (bt), previous market separated into
positive and negative market returns (r+

t and r�t , respectively) and the
respective interaction terms (btr

+
t and btr

�
t ). In all groups, the three

first-order terms of previous bet, positive market and negative
market (bt , r

+
t , r�t ) significantly predicted subjects’ next bets (bt+1, all

P o 0.0001). However, a negative contribution from btr
+
t was seen in

nonsmokers only (P o 0.0001; see Supplementary Table 1 online).
Thus, as observed previously2, fictive error over gains as defined above
emerged as an important signal guiding the next bets of nonsmoking
controls (Fig. 2a and Supplementary Table 1).

In marked contrast, the sated and unsated smokers’ behavior was not
influenced by these same fictive error signals. In chronic smokers,
fictive errors over gains did not significantly guide players’ next bets
(Fig. 2a and Supplementary Table 1; P 4 0.1 for both sated and
unsated smokers relative to zero). Equally important, a robust neural
response was observed to fictive errors in all groups, despite the absent
influence of fictive errors on smokers’ behavior. The neural signals were
examined with fictive error regressors derived on the basis of each
subject’s unique behavior and fit to a standard hemodynamic response
function that was time-locked to the presentation of each segment of
market history (see Supplementary Methods online for a listing of all
regressors used in the general linear model analyses19). Nonsmokers
and both unsated and sated smokers all showed consistent neural
responses in bilateral ventral caudate to fictive errors (Fig. 2b). This is
exactly the region that was previously identified using the same f +

regressor2 and is also the region associated with the ‘actor’ role in actor-
critic models of reinforcement learning6. Thus, in chronic smokers, the
robust intact neural response to error signals derived from fictive
outcomes is discordant with the absent impact of this error signal on
behavioral choice.

Neural responses to the fictive error signal were further associated
with subjective craving in anterior cingulate cortex. Specifically, linear
regression analyses of craving (assessed using the Shiffman-Jarvik
Withdrawal Scale; SJWS16,20) with individual subjects’ effect sizes of
neural responses to fictive error identified a region of rostral anterior
cingulate cortex (rACC) showing robust association with subjective
craving only in unsated smokers (Fig. 3). rACC activation is commonly
seen in response to stimuli that carry negative emotional salience and in
tasks that elicit affective decision making or conflict21–25. The associa-
tion of subjective craving in unsated smokers with hemodynamic
responses to fictive errors in the rACC further implicates this region
in responses to undesirable outcomes derived from fictive experience
and highlights that the dissociation between ventral caudate activation
and smokers’ behavioral response to fictive errors is not dependent on
the state of nicotine satiety.
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Figure 3 Subjective craving and correlation with neural response to fictive

error in unsated and sated smokers. (a) Self-report measure of craving

differentiated unsated from sated smokers. On arrival at the laboratory for

both sessions, subjects completed a battery of self-report questionnaires,

including the SJWS. The bar plot depicts means and s.e.m. from the Craving

subscale of the SJWS. Unsated smokers reported significantly greater craving

than sated smokers (unsated 4 sated, P o 0.0002). (b) Correlation of

neural fictive error beta coefficients with subjective craving score. Unsated

smokers showed a significant correlation in rACC of neural responses to

fictive error with subjective craving (P o 0.001, uncorrected; cluster size Z

5; maximum: x ¼ –4, y ¼ 40, z ¼ 12).
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Figure 4 Responses to error signals derived from experienced outcomes.

Individual subjects’ experiential errors were computed as the ongoing

difference between z-scored rewards already gained (~gt ) and z-scored rewards
expected ( ~bt ), where the subjects’ bets served as a proxy for expected reward

(TDt ¼ ~gt � ~bt ). Subjects’ normalized next bets were regressed against

normalized previous bet and the TD error. (a) Nicotine satiation increased

behavioral influence of the TD error. The bar plot shows the normalized mean

beta coefficients and s.e.m. of TD predicting next bets in the unsated and

sated smokers (normalized to the sated smoker case). The behavior of

both the unsated and sated smokers was strongly influenced by TD error

(*** indicates beta coefficients with P o 0.0001 relative to zero). In

addition, the influence of TD was significantly larger in the sated smokers

(sated 4 unsated, P o 0.006). The influence of TD in nonsmokers was

equivalent to that in the unsated smokers (nonsmokers versus unsated

smokers, P ¼ 0.74). The complete regression tables are presented in

Supplementary Table 2. (b) Nicotine satiation increased neural responses

associated with TD error. Thresholded SPM2 t-statistic maps of the TD

regressor in unsated and sated chronic smokers are shown. The neural

response to TD error was robust in the sated smokers and diminished in the

unsated group (P o 0.001, uncorrected; cluster size Z 5, random effects

analysis, n ¼ 31 unsated smokers, n ¼ 31 sated smokers, y ¼ 8).
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Responses to error signals derived from experienced outcomes

To assess the impact of nicotine saturation on prediction error signals
derived from actually experienced reward, we used a model-free version
of an experiential (TD-based) error signal and compared unsated and
sated smokers’ neural and behavioral responses to these signals.
Specifically, individual subjects’ experiential errors were computed as
the ongoing difference between z-scored rewards already gained (~gt)
and z-scored rewards expected (~bt), where the subjects’ bets serve as a
proxy for expected reward (TDt ¼ ~gt � ~bt). Individual TD regressors
were then constructed for each subject and entered into linear multiple
regression analyses predicting subjects’ behavioral choices and into the
general linear model examining neural responses associated with
experiential prediction errors (see Supplementary Methods for details
of general linear model analyses).

Both unsated and sated smokers’ behavior was strongly influenced
by experiential prediction error (Fig. 4a, see Supplementary Table 2
online for multiple regression tables). Specifically, in both groups,
subjects’ subsequent bets increased with increasing magnitude of the
experiential error (both P o 0.0001 versus zero; Fig. 4a and Supple-
mentary Table 2). In addition, nicotine satiation conferred a magnified
influence of this experiential learning signal in guiding smokers’
next bets (sated 4 unsated, P o 0.006; Fig. 4a and Supplementary
Table 2).

Concomitant with the enhanced influence of experiential error on
sated smokers’ behavior, greater neural activation associated with TD
error was seen in this group. That is, unsated smokers showed
diminished neural responses to experiential errors in putamen, whereas
sated smokers showed robust neural activation in bilateral putamen
(Fig. 4b). Similar striatum activations to TD errors in decision-making
tasks have been closely examined and consistently reported by our
group and others (nonsmokers illustrated in Supplementary Fig. 1
online)2–6. Moreover, in ventral striatum, smokers’ responses to TD
errors (left putamen; Supplementary Fig. 2 online) were not associated
with subjective craving, but rather were parametrically associated with
exhaled carbon monoxide levels; these levels are also known to correlate
highly with plasma nicotine concentration16,17,26.

DISCUSSION

From rewards gained to rewards that ‘might have been’, actual experi-
ence and fictive outcomes generate complementary learning signals
that guide everyday behavior2,7,27. Here, we found that chronic
smokers, relative to nonsmokers, showed a reduced influence of
abstractly framed learning signals on behavior without any accompa-
nying loss of the associated neural signal. That is, although fictive error
was indeed computed in this group (as indicated by the robust
neural response in bilateral caudate), ‘what might have been’ did
not emerge as a control signal that guides behavioral choice. In
contrast, a marked behavioral impact of experiential TD-based
learning signals, related directly to reward harvesting9, remained intact
in smokers. Under nicotine satiation, neural signals associated
with this experiential error exactly paralleled an enhanced impact of
these errors in guiding behavior. Together, this model-based
approach demonstrates that neural error signals derived from ‘what
might happen’ remain intact in addicts, but, as exactly propounded by
clinical criteria of addiction15, their influence on decision making
is absent.

Our data further suggest that the source of the observed difference
originates from the lost impact of the actual gain on smokers’ next bets
(Fig. 2). This is an important component of the findings presented
here, as addicts are thought to have a diminished response to biological
rewards. However, for the fictive error to have an impact on

nonsmokers’ behavior, two relationships must concurrently hold: the
influence of the maximum fictive gain on the next bet must be positive,
and the relationship of the actual gain to the next bet must be negative.
Indeed, we found that the influence of the reward (here the actual gain)
was negative in nonsmokers; that is, there was a strong negative
relationship between actual gain and next bet across all gain levels
(Fig. 2a and Supplementary Table 1). This was not true for smokers
(Fig. 2a). Considered together, these findings suggest that actual gains
are not being treated as rewards in the smoker group, given the typical
designation of reward as a positive reinforcer on which learning occurs
and on which approach behavior is predicated.

The present data suggest an extension to existing temporal difference
models of reinforcement learning that offer a theoretical mechanism by
which drugs of addiction compromise dopaminergic systems1. Speci-
fically, fictive prediction errors (signaling the ongoing difference
between what might have been obtained and what was actually
obtained) may be incorporated into the reinforcement learning frame-
work using a modification of an actor-critic architecture called super-
vised reinforcement learning28. In supervised reinforcement learning,
the usual TD learning algorithm generates a TD-error critic signal that
is used to guide behavior through its influence on the behavioral policy
of the actor. The behavioral policy is further guided by input from an
external supervisor with a more global assessment of the quality of a
behavioral response. Fictive errors in living organisms may then be
considered to be the output of an ‘endogenous supervisor’ that
modulates or complements the error signal coming to the actor from
the TD critic. A natural question that arises in this theoretical frame-
work, and in light of the current findings, is how the actor balances the
inputs of these two critics.

Many studies have highlighted the presence of increased levels of
dopamine in the ventral striatum (nucleus accumbens, putamen)
following acute exposure to nicotine13,26. Such data, and those showing
that dopamine enhancing drugs (for example, levodopa) confer
increased ventral striatal response to experiential learning signals5,29,
suggest a similar contribution of nicotine to the increased TD signal
shown here in the ventral striatum of sated smokers. Identifying the
possible physiological substrates of the absent effect of the neural fictive
error signal in chronic smokers is perhaps a greater challenge. Never-
theless, some insight may come from data that identify behavioral risk
factors for drug use and show a variety of changes in neurotransmitter
function resulting from chronic drug abuse, providing a mechanistic
account for the behavioral phenomena characteristic of addicted
individuals30–35. In chronic smokers, the discordance between the
robust neural fictive error and absent behavioral influence of this signal
may fall in the constellation of features associated with chronic drug use
or vulnerability to addiction.

Although potential mechanisms underlying the dissociation between
smokers’ neural activation and behavior were not tested in the current
task, we draw insight from recent work in the neural substrates of
temporal discounting and cognitive control. These studies show that
smokers, relative to nonsmokers, consistently choose smaller immedi-
ate outcomes over larger, but more delayed, outcomes across both
hypothetical and actual rewards36–39. We speculate that the steep delay
discounting seen in smokers may be a specific manifestation of a more
general deficit in using striatal learning signals derived from fictive
outcomes to guide behavior. In controls, functional neuroimaging data
show that decision making about immediate outcomes elicits activa-
tion in the striatum, whereas decisions about delayed, or fictive,
outcomes elicit additional activation in lateral prefrontal cortical
regions that have been implicated in cognitive control40–42. In smokers,
higher-order control signals modulating the influence of fictive
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outcomes on behavioral choice may be impaired, leaving smokers
guided only by immediate or experiential rewards and uninfluenced by
fictive learning signals.

In summary, we show here that nicotine satiation increases the
expression of the TD error signal in ventral striatum and that the
behavioral response to fictive error signals is diminished in chronic
smokers, despite the ongoing and robust presence of a neural response
to this signal. These findings are consonant with the emerging under-
standing of addiction at the molecular level, and the computational
model-based approach implemented here facilitates a mechanistic
understanding of continued drug use in the presence of potential
negative consequences and foregone positive outcomes.

METHODS
Participants. Smokers with no known psychiatric disorders were recruited

from the Houston metropolitan area by advertisements seeking individuals

who regularly smoke at least 15 cigarettes a day, had been doing so for at least

the past year and were not currently attempting to quit. After an initial

screening in which basic fMRI contraindications were assessed, qualifying

individuals were invited to the laboratory for further assessment and

fMRI scanning.

Following these procedures, 34 participants were initially enrolled in the

study. On arrival at the laboratory, three of these individuals reported smoking

an average of 12 daily cigarettes; data from these subjects were not included in

subsequent analyses. The demographic and cigarette-use profile of the 31

included smokers are presented in Table 1.

In accordance with the Institutional Review Board of Baylor College of

Medicine, written informed consent was obtained at the first laboratory visit,

and it was emphasized that participants could withdraw from the study at any

time with no adverse consequences.

Experimental procedure. At each visit to the laboratory, participants com-

pleted a standard battery of questionnaires assessing smoking use and mood

(including the Fagerstrom Test for Nicotine Dependence43, the SJWS20 and the

Positive and Negative Affect Scale44).

Smokers were asked to complete the fMRI experimental sessions on 2

separate scanning days: a ‘sated’ day and an ‘unsated’ day. For the sated day,

smokers were instructed to smoke as usual throughout the day, and, on arrival

at the laboratory, to smoke until satiated. For the unsated session, smokers were

instructed to refrain from smoking, beginning at midnight before the experi-

mental day. The order of the two sessions was approximately balanced; 16

smokers completed the sated day first and 15 smokers completed the unsated

day first. On arrival at the laboratory for both sessions, exhaled carbon

monoxide was obtained as an objective assay of satiety and blood nicotine

saturation (E50 Smokerlyzer)16,17. Scores on measures of cigarette use at each

scanning session are presented in Table 2.

We used 31 nonsmoking previously identified2 individuals as the nonsmoker

comparison group. These individuals answered ‘‘no’’ to both of the following

questions: (i) ‘‘Have you smoked over 50 cigarettes in your lifetime?’’ and (ii)

‘‘Have you smoked in the past 12 months?’’

Stimuli and task. On each day of fMRI scanning, subjects performed the

following ‘Market Task’. Subjects were endowed with $100 to invest in stock

market fluctuations. The market task was carried out under two conditions,

Live and Not Live. At the beginning of each Live block, an initial segment

of price history from a historic stock market was displayed. Subjects used a

two-button box to move a slider bar to invest a percentage (0 to 100%) of their

portfolio in each market segment. On submission of the investment decision

(with a button box in the opposite hand), the next market segment was

revealed after a delay of 750 ms, and subjects’ current portfolio value and

fractional market change were updated (see Fig. 1b). When subsequent market

segments were revealed, the previous history remained on display, but the

history was re-centered to prevent telegraphing unintended information about

the market. After a delay of 750 ms, the slider bar changed from gray to red,

indicating the free response time for the subsequent portfolio allocation

decision. Each market comprised 20 investment decisions.

Not Live markets were interspersed as visual controls. In the Not Live

condition, the market display remained the same while the portfolio amounts

were replaced with ‘N/A’. Subjects used the slider bar to make a simple visual-

discrimination choice, indicating whether the current market price was higher

or lower than the price two segments before the current segment. This was also

repeated for 20 choices.

At each fMRI experimental session, participants played ten Live and ten Not

Live markets, presented in pseudorandom order. The specific markets played in

the Live and Not Live conditions at the first and second scanning sessions did

not overlap.

Behavioral analyses. To assess the impact of fictive error, f + ¼ (1 � r+
t ) – (btr

+
t ),

on subjects’ behavior, we carried out linear mixed-effects multiple regression

analyses on the series of market returns and investment decisions extracted

from each subject. Subjects’ investments were first z-scored within subject. As

further detailed in the main text (also see Fig. 1b), each investment decision at

time t is denoted as a bet, bt (percentage of current portfolio invested in the

market). On submitting an investment decision, the incremental market change

relative to the prior market price is the market return (rt). Therefore, positive

market returns are expressed as r+
t ¼ ðpt � pt�1Þ=ðpt�1Þ40, where pt is the

market price at time t; negative market returns are similarly defined as

r�t ¼ ðpt � pt�1Þ=ðpt�1Þo0. Subject gains then become btr
+
t for positive

market returns, and losses are btr
�
t for negative market returns. The final

return of each market was excluded from the regression, as there is no

investment decision following the final market segment. Using the variables

defined above, the following multiple regression was carried out within each

group in R (function lm, The R Foundation for Statistical Computing):

~bt+1 ¼ b0 +b1
~bt + b2r

+
t + b3r

�
t +b4btr

+
t + b5btr

�
t ;

where ~bt is the within-subject z-scored bet. The regression was performed

simultaneously across all three groups by coding smoker status (unsated, sated

and nonsmoker) as three indicator variables (SATED, UNSATED and NON-

SMOKER) and by including a term in the regression of the form STATUS �
regressor for each indicator and regressor (see Supplementary Methods for

complete regressor list).

To assess the impact of nicotine satiation on smokers’ behavioral responses

to experiential learning signals, we carried out a multiple regression predicting

subjects’ behavior with state of smoking satiety and a model-free version of a

TD error signal. Individual subjects’ TD (experiential) errors were computed as

the ongoing difference between z-scored rewards already gained (~gt) and

z-scored rewards expected (~bt), where the subject’s bet serves as a proxy for

expected reward. At market return at time t, the z-scored subject gain,

gt ¼ ðbrÞt , was defined as ~gt ¼ ðgt � meanðgÞÞ=s:d:ðgÞ, where the mean and

s.d. are taken over the subject gains already experienced. The subject’s
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Table 1 Subject characteristics (n ¼ 31; mean ± s.d.)

Age (years) 35.1 ± 11.0

Sex (no. of females) 20

Education (years) 15.5 ± 2.1

Current cigarettes per day 19.1 ± 4.2

No. of quit attempts in past 5 years 2.2 ± 2.0

Age of daily smoking (years) 19.6 ± 4.8

Table 2 Smoking measures in Unsated and Sated states (mean ±

s.e.m.)

Unsated Sated

Subjective craving* 31.6 ± 1.6 24.2 ± 1.0

Exhaled carbon monoxide (ppm) 7.9 ± 0.9 21.4 ± 2.0

Time since last cigarette (h) 11 ± 0.5 0 ± 0.0

Unsated and Sated smokers differed on all measures (P o 0.001 for each measure).
*Responses on the Craving subscale of the Shiffman-Jarvik Withdrawal Scale.
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z-scored bet, ~bt , was defined similarly. The model-free TD error is

TDt ¼ ~gt � ~bt . Smoker status was coded as described above using the

indicators SATED, UNSATED and NONSMOKER. The following

multiple regression was carried out in R (function lm, The R Foundation for

Statistical Computing):

~bt+1 ¼ b0SATED+ b1UNSATED+ b2NONSMOKER+b3SATED � ~bt
+ b4UNSATED � ~bt +b5NONSMOKER � ~bt
+ b6SATED � TDt +b7UNSATED � TDt + b8NONSMOKER � TDt

fMRI data acquisition and reduction. All scans were carried out on a Siemens

3.0 Tesla Allegra scanner. Initial high-resolution T1-weighted scans were

acquired using a magnetization-prepared rapid-acquisition gradient-echo

sequence (MP-RAGE; Siemens). Continuous whole-brain imaging was per-

formed as participants engaged in the interpersonal exchange task. Functional

run details were as follows: echo-planar imaging, gradient recalled echo,

repetition time (TR) ¼ 2,000 ms, echo time (TE) ¼ 40 ms, flip angle ¼ 901,

64 � 64 matrix, 26 4-mm axial slices acquired parallel to the anteroposterior

commissural line for measurement of the blood oxygenation level–dependent

effect45–47. Scanning yielded functional 3.3-mm � 3.3-mm � 4.0-mm voxels.

Data reduction was carried out using SPM2 (http://www.fil.ion.ucl.ac.uk/

spm/). Motion correction to the first functional scan was performed using a

six-parameter rigid-body transformation within subjects48. The average of the

motion-corrected images was co-registered to each individual’s structural MRI

using a 12-parameter affine transformation. Slice timing artifact was corrected,

and images were subsequently spatially normalized to the Montreal Neurolo-

gical Institute (MNI) template49 by applying a 12-parameter affine transforma-

tion, followed by nonlinear warping using standard basis functions50. Finally,

images were smoothed with an 8-mm isotropic Gaussian kernel and high-pass

filtered in the temporal domain (filter width of 128 s).

General linear model analyses. To identify distinct blood oxygenation level–

dependent responses associated with experiential and fictive error, two regres-

sors, TD and fictive error, were added to the basic model (a complete list of

regressors is in the Supplementary Methods). The TD and fictive error

regressors were constructed as follows. The fictive error regressor was formed

by convolving the market revelation (punctuate) regressor with the fictive

error, f + ¼ (1 � r+
t ) – (btr

+
t ). The TD regressor was constructed by convolving

the market revelation regressor with TD error. The initial market and first

and final market revelation data were omitted from both the fictive and

TD regressors. Orthogonalization of the fictive error regressor with respect

to the TD error regressor was accomplished by subtracting the orthogonal

projection of the fictive error onto the TD error from the fictive error

regressor (fictive error orthogonalized with respect to the TD error regressor;

Fig. 3b).

SPM2 beta maps were constructed for regressors of interest and then entered

into a random-effects analysis by using the one-sample t-test function. All

regions of activation positively associated with the TD and fictive error

variables in the nonsmoker, unsated smoker and sated smoker groups are

presented in Supplementary Table 3 online (SPM2 Talairach coordinates in

MNI space). Beta maps were thresholded at P o 0.001, uncorrected, cluster

size Z5.

Note: Supplementary information is available on the Nature Neuroscience website.
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