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SUMMARY

RNA localization is one mechanism neurons use to
spatially and temporally regulate gene expression
at synapses. Here, we test the hypothesis that cells
exhibiting distinct forms of synaptic plasticity will
have differences in dendritically localized RNAs.
Indeed, we discover that each major subregion of
the adult mouse hippocampus expresses a unique
complement of dendritic RNAs. Specifically, we
describe more than 1,000 differentially expressed
dendritic RNAs, suggesting that RNA localization
and local translation are regulated in a cell type-
specific manner. Furthermore, by focusing Gene
Ontology analyses on the plasticity-resistant CA2,
we identify an enrichment of mitochondria-associ-
ated pathways in CA2 cell bodies and dendrites,
and we provide functional evidence that these path-
ways differentially influence plasticity and mitochon-
drial respiration in CA2. These data indicate that
differences in dendritic transcriptomes may regulate
cell type-specific properties important for learning
and memory and may influence region-specific dif-
ferences in disease pathology.

INTRODUCTION

As polarized and morphologically complex cells, neurons need

to coordinate gene expression patterns across multiple cellular

compartments, often hundreds of microns away from the cell

soma. To achieve this, neurons localize RNA transcripts to

axonal and dendritic compartments to synthesize proteins ‘‘on

demand’’ in response to local cues, such as synaptic activity.

This process, called local protein synthesis, affords tight spatial

and temporal control over gene expression and plays an essen-

tial role in the brain throughout development and during learning

(Holt and Schuman, 2013; Kiebler et al., 2013; Steward and

Schuman, 2001). Given the complexity of neuronal morphology,
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it comes as little surprise that dysregulation of RNA localization

has been implicated in several neurological diseases, such as

fragile X syndrome and other autism spectrum disorders, amyo-

trophic lateral sclerosis, and Alzheimer’s disease (Donlin-Asp

et al., 2017; Holt and Schuman, 2013; Kiebler et al., 2013).

The repertoire of RNA transcripts in adult axons and dendrites

in vivo and their role(s) during learning and memory are only

beginning to be explored. Advancements in RNA sequencing

(RNA-seq) technologies have led to the identification of thou-

sands of RNA transcripts in adult hippocampal CA1 dendrites

in vivo (Ainsley et al., 2014; Cajigas et al., 2012; Nakayama

et al., 2017). However, whether different hippocampal cell types

express distinct dendritic transcriptomes and whether dendritic

RNAs are regulated in a cell type-specific manner are currently

unknown. Given that several identified dendritic RNAs have

functions at the synapse (Cajigas et al., 2012; Holt and Schuman,

2013), we hypothesized that cell types exhibiting distinct forms

of synaptic plasticity might have different complements of den-

dritically localized RNA. In particular, we were interested in

area CA2, a small subregion sandwiched between areas CA1

and CA3 that is known to be resistant to long-term potentiation

(LTP) (Zhao et al., 2007) and injury-induced cell death (Nadler

et al., 1978), and important for encoding social experience (Pa-

gani et al., 2015; Alexander et al., 2016, 2018; Dudek et al.,

2016; Hitti and Siegelbaum, 2014; Raam et al., 2017; Smith

et al., 2016; Leroy et al., 2017; Lin et al., 2018; Meira et al., 2018).

To identify uniquely expressed or cell-type-enriched dendritic

transcripts, we used laser capture microdissection (LCM) on a

transgenic mouse line that expresses enhanced green fluores-

cence protein (Amigo2-EGFP) in area CA2 cell bodies and den-

drites. The EGFP signal in CA2 delineates neighboring subregion

borders and enabled the isolation of cell body and dendritic layers

from each of the major hippocampal subregions (CA1, CA2, CA3,

and dentate gyrus [DG]) for RNA-seq. This revealed more than

1,000 differentially expressed dendritic RNAs, suggesting that

local translation plays an important and overlooked layer of cell

type-specific regulation in hippocampal neurons in vivo. Further-

more, we found that dendritic RNAs display cell type- and

compartment-specific patterns of splicing that can be viewed at

http://splicejam.vtc.vt.edu, although interestingly, we detected
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Inhibiting Translation Leads to a Decrease in CA2 Synaptic Responses

(A) Coronal section of an Amigo2-icreERT2; ROSA-tdTomato reporter mouse showing Amigo2 (pseudocolored in green) colocalization with CA2 molecular

marker PCP4. Nuclei are counterstained in blue. Arrows denote CA2 borders.

(B) CA2 whole-cell voltage-clamp recordings in acute mouse hippocampal slices in the presence of anisomycin. Gray bar indicates duration of application.

Representative traces are shown.

(C) Average amplitudes (±SEM) from the last 10 min of recording normalized to baseline for CA1 and CA2 in either cycloheximide (Chx; 60 mm/ACSF), vehicle

conditions (ACSF and DMSO), or anisomysin (Anis; 20 mm/0.1% DMSO). n = 6–9 slices from six to eight mice per condition. **p < 0.01, two-sided t test; *p < 0.05

significantly different from baseline.

Scale bar, 250 mm.
10-fold greater splicing differences across putative interneuron

and non-neuronal cells within dendritic laminae. Moreover, we

identified an enrichment of RNAs associated with mitochondrial

function in CA2 cell bodies and dendrites and show that blocking

mitochondrial calcium uptake influences the plasticity-resistant

phenotype in CA2 and that CA2 neurons have greater mitochon-

drial respiration compared with neighboring neurons. In sum, our

results support accumulating evidence that thousands of RNAs

are present in adult dendrites and extend those findings by iden-

tifying more than 1,000 differentially expressed dendritic RNAs in

the hippocampus. Furthermore, our data suggest that differences

in dendritic transcriptomes regulate cell type-specific properties,

such as synaptic plasticity and mitochondrial function, and

therefore likely affect learning and memory and region-specific

differences in disease pathology.

RESULTS

Ongoing Translation Is Required for Maintaining CA2
Synaptic Transmission
Synapses in the stratum radiatum of area CA2 (Figure 1A) are

resistant to LTP, a process that requires local protein synthesis.

However, LTP is readily expressed in CA2 neurons from regu-

lator of G-protein signaling 14 (RGS14)-knockout mice (Lee

et al., 2010) and can be restored in wild-type mice by inducing

LTP in the presence of high external calcium (10 mM; Simons
et al., 2009) or after degradation of perineuronal nets (Carstens

et al., 2016). These data indicate that CA2 synapses have the ca-

pacity (i.e., cellular machinery) to undergo LTP but suggest that

multiple plasticity-restricting mechanisms are at play. In fact, we

found that even the maintenance of baseline synaptic transmis-

sion in CA2 may require ongoing dendritic protein synthesis, as

inhibiting translation with anisomycin or cycloheximide in acutely

prepared hippocampal slices leads to a modest but consistent

decrease in synaptic responses within 5 min in CA2 neurons

but not in CA1 neurons (p < 0.01, two-sided t test; n = 6–9 slices

from six to eight mice per condition; Figures 1B and 1C). Thus,

not only synaptic plasticity but also synaptic transmission in

CA2 is highly regulated. We hypothesized that local protein syn-

thesis may be setting the threshold for synaptic plasticity at CA2

synapses, which was our motivation for identifying the RNAs en-

riched in CA2 dendrites.

Identifying Subregion-Specific Dendritic
Transcriptomes Using LCM-RNA-Seq
To identify RNAs present in CA2 and neighboring subregion den-

drites, we performed RNA-seq on LCM samples captured from

the cell body (stratum pyramidale and granule cell layer) or the

dendritic laminae (stratum radiatum and molecular layer) from

each major subregion in hippocampus (CA1, CA2, CA3, and

DG) from three adult male Amigo2-EGFP mice (Figure 2A). We

used an optimized low-input LCM-RNA-seq protocol that
Cell Reports 29, 522–539, October 8, 2019 523



Figure 2. LCM-RNA-Seq to Isolate Subregion-Specific Dendritic Transcriptomes

(A) Sagittal Amigo2-EGFP section pre- (left) and post-laser capture of CA1, CA2, CA3, and DG cell body and apical dendritic compartments in bright field (middle)

and fluorescence (right).

(B) Three-dimensional (3D) between-group analysis (BGA) plot of the three biological replicates per cell type (CA1, CA2, CA3, DG) per compartment (cell body,

dendrite).

(C) Correlation scatterplots of cell body and dendrite median expression from each subregion. RNAs highlighted in yellow are well-known dendritic RNAs (see

Figure S3). Note that non-pyramidal cell markers (interneurons, glia, oligodendrocyte, vasculature) are enriched in the dendrite samples for each subregion. Scale

bar, 200 mm.
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obtains considerably higher quality RNA (RNA integrity number

[RIN] > 9) and more robust RNA-seq results than current low-

input RNA-seq protocols (Farris et al., 2017). RNA-seq data

from each of the three biological replicates clustered by cell

type and by compartment, as visualized by a between-group

analysis (BGA; amethod similar to principal-component analysis

[PCA] that maximizes distance between sample groups instead

of individual samples (Culhane et al., 2002) (Figure 2B).

Comparing cell body and dendrite expression within a subregion

shows that subregion-specific pyramidal cell markers are en-

riched in the cell body samples, and non-pyramidal cell markers

are enriched in dendrite samples (Figure 2C). The expression of

several non-pyramidal cell markers was validated using single-

molecule fluorescence in situ hybridization (smFISH; Figure S1).

We next evaluated whether the RNAs we detected in our

mouse CA1 dendrite samples overlapped with previously pub-

lished dendritic RNAs isolated from rat CA1, identified using

RNA-seq (Cajigas et al., 2012). Out of the 2,550 RNAs identified

in rat CA1 dendrites, we detected 2,342 of them (92%) in mouse

CA1 dendrites (Figure S2A), suggesting a high degree of conser-

vation in hippocampal dendritic RNAs among rodents. We also

compared our mouse CA1 dendritic transcriptome dataset with

other recent mouse CA1 dendritic transcriptome datasets

acquired using ribosome profiling (Ainsley et al., 2014) or RNA-

seq (Nakayama et al., 2017), and similarly, we found a high de-

gree of overlap across datasets. Specifically, 635 RNAs were

shared by at least three CA1 dendritic transcriptome datasets,

but only 68 RNAs were shared among all four CA1 dendritic tran-

scriptome datasets (Figure S2B). These 68 shared dendritic

RNAs are enriched in our CA1 dendrite samples compared

with CA1 cell body samples, as seen in Figure 2C.

Area CA2 Transcriptome Is Most Similar to Area CA3
Transcriptome
We found that CA2 cell body and dendrite samples were closest

to, but not overlapping with, CA3 cell body and dendrite sam-

ples, respectively. Indeed, when data from cell body samples

were centered by the mean cell body signal and hierarchically

clustered, CA2 and CA3 cell body samples grouped closer

together and showed a weak positive correlation with each other

(Figure 3A), indicating that these areas havemore similar expres-

sion profiles with each other than with area CA1 and DG.

Hippocampal Subregions Express Distinct Dendritic
Transcriptomes
Next, we assessed whether dendrites express RNAs that are

specific to their subregion. We centered the average signal per

sample group (e.g., CA2 cell body) by the mean signal per

compartment (cell body or dendrite) to compare the deviation

from average across sample groups. We measured the degree

of correlation between the dendrite and cell body groups across

subregions, and remarkably, we found that the dendrite tran-

scriptome from a given subregion strongly correlates with only

the cell body transcriptome from the same subregion (Figure 3B).

We saw the same result in an independent LCM pilot experi-

ment comparing gene expression from CA1 and CA2 cell body

and dendritic laminae (N = 3 adult male Amigo2-EGFP mice)

using whole-transcriptome microarray technology. Namely, we
found that mean subtracted CA1 and CA2 dendrite samples

correlated only with their respective cell body samples (Fig-

ure S3). These data indicate that each hippocampal subregion

expresses a distinct complement of dendritic RNA that is not

shared by other hippocampal subregions. Consistent with the

cell body data, CA2 and CA3 dendrite samples show a weak

positive correlation with CA3 and CA2 cell body samples,

respectively, indicating that areas CA2 and CA3 express a sub-

set of shared dendritic RNAs that are not enriched in CA1 andDG

dendrites (Figure 3B).

To identify which RNAs drive the positive correlations in Fig-

ure 3B, we plotted the cell body differences from the hippocam-

pal mean versus the dendrite differences from the hippocampal

mean for each subregion. We identified 1,055 RNAs that showed

significant enrichment (defined as >1.5 linear fold change above

the mean and a false discovery rate [FDR] of %0.01) in both the

cell body and dendrite sample from any subregion (Figure 3C;

Figure S4; Table S1). We classify these RNAs as high-confi-

dence, cell-type-enriched dendritic RNAs. Several high-confi-

dence CA2-enriched dendritic RNAs were validated for dendritic

expression using smFISH and immunofluorescence (Figure 3D;

Figures S5 and S6).

Cell-Type-Enriched Dendritic RNAs Have Longer 30

UTRs and Are Abundantly Spliced
Importantly, our high-confidence, cell-type-enriched dendritic

RNA gene list is an underestimate of the total number of dendritic

RNAs expressed in hippocampal neurons, as it excludes den-

dritic RNAs that are similarly expressed across subregions

(e.g., Camk2a; Burgin et al., 1990). To address this, we compiled

a list of putative dendritic RNAs that are expressed in both cell

body and dendrite samples in any subregion well above a noise

threshold (Table S2). We reason that a dendritic RNA must be

present in the cell body in order to be trafficked to dendrites

but that it does not need to be expressed greater in dendrites

than in the cell body. This is in contrast to other studies that often

define dendritic RNAs as those enriched (e.g., 2-fold greater) in

dendrites compared with the cell body. However, as evident in

our smFISH images (Figure 3F; Figure S5), there are likely hun-

dreds, if not thousands, of dendritic RNAs that do not fit that pro-

file. Furthermore, requiring cell body expression increases the

likelihood that the RNA is from a pyramidal or granule cell source,

given that they make up the vast majority of cells within the cell

body layers (�95%). In contrast, our dendrite samples contain

many classes of cells, including various interneuron populations,

astrocytes, microglia, and vasculature endothelial cells, in addi-

tion to axons of passage (Cajigas et al., 2012). Thus, our ‘‘puta-

tive dendritic’’ RNA list (12,265 RNAs) is inclusive of potential

hippocampal dendritic RNAs, but it also contains RNAs that

are expressed in additional cell classes present within the den-

dritic laminae. This may also be true for unvalidated hits in our

high-confidence, cell-type-enriched dendritic transcripts. Addi-

tionally, we classify two more RNA lists for further analysis: a

list of ‘‘cell body-retained’’ RNAs that are expressed in the cell

body samples but not the dendrite samples (548 RNAs) and

the inverse, a list of putative ‘‘non-pyramidal’’ (or non-granule)

cell RNAs that are expressed in the dendrite samples but not

the cell body samples (1,871 RNAs) (Figure S7; Table S2). To
Cell Reports 29, 522–539, October 8, 2019 525



Figure 3. Dendrites from Different Subregions Express Distinct Complements of RNA

(A) Heatmap of cell body correlations for each biological replicate (Rep) centered by the cell body mean. The correlation shows whether the deviation from the

mean correlates across replicates. The Euclidean distance is represented by the dendrogram on the left.

(B) Heatmap of average correlations for each cell type centered by the mean per compartment. The correlation shows whether the deviation from the mean

correlates across cell body and dendrites. Note that each dendrite sample correlates only with the cell body sample of the same cell type.

(C) Correlation scatterplot of RNAs from CA2 cell body and dendrite samples (from C). RNAs highlighted in red are ±1.5-fold change from the mean in both

compartments. Labeled and unlabeled RNAs in the upper right quadrant are enriched in both CA2 cell bodies and dendrites compared with the mean across all

cell types.

(D) Single-molecule fluorescent in situ hybridization (smFISH) confirming that Rgs14,Necab2, and Plch2 are enriched in CA2 cell bodies and dendrites compared

with CA1, CA3, and DG cell bodies and dendrites. Grayscale inverted images are shown to better visualize dendritic localization. White arrows denote subregion

transitions.

Scale bars, 50 and 25 mm. CB, cell body; DE, dendrite.
confirm that the majority of our high-confidence dendritic RNAs

are neuronal, we performed hypergeometric enrichment using

cell class-specific gene expression to identify cell types overrep-

resented in each RNA list. Indeed, ‘‘neuron’’ gene expression is

statistically overrepresented in the high-confidence dendrite and

cell-body-retained lists but not in the non-pyramidal RNA list.
526 Cell Reports 29, 522–539, October 8, 2019
‘‘Microglia’’ and ‘‘astrocyte’’ gene expression are statistically

overrepresented in the non-pyramidal list but not in the high-

confidence dendrite and cell-body-retained lists (Figure S7).

With these lists, we sought to determine whether RNA

sequence properties that have been previously described for

dendritic transcriptomes were also evident in our candidate



dendritic RNAs. A recent study using mouse cortical synapto-

neurosomes found synaptically localized mRNAs have longer

30 UTRs (Ouwenga et al., 2017). In agreement, another recent

study using 30-end sequencing to identify 30 UTRs of dendritically
localized RNAs in CA1 also found them to be significantly longer

than non-localized RNAs, but they also found this to be true of

somatically enriched RNAs (Tushev et al., 2018). When assess-

ing the types of transcripts present in each RNA list, we found

that the putative dendritic and high-confidence, cell-type-en-

riched dendritic transcripts had a greater proportion of protein

coding transcripts harboring 30 UTRs compared with cell body-

retained, non-pyramidal, or all detected protein coding tran-

scripts (putative dendritic 74.4%, high-confidence dendritic

65.8%, cell body retained 38.0%, non-pyramidal 53.0%, all

detected protein coding transcripts 65.7%; Figure S7). Further-

more, using GENCODE-annotated 30 UTR lengths per tran-

script, we compared the average 30 UTR length of detected

transcripts across RNA lists. Consistent with previous studies,

high-confidence, cell-type-enriched dendritic RNAs showed

significantly longer 30 UTRs compared with the cell body-re-

tained transcripts (p = 2.413 10�29) and the non-pyramidal tran-

scripts (p = 2.593 10�8, Wilcoxon rank-sum test with continuity

correction; Figure S7).

The non-pyramidal transcripts also showed statistically longer

30 UTRs compared with the cell body-retained transcripts

(p = 1.25 3 10�17, Wilcoxon rank-sum test with continuity

correction), suggesting that the effect may in part be driven by

shorter 30 UTRs in the cell body-retained RNAs (Figure S7). Strik-

ingly similar results were obtained using the observed 30 UTR
lengths and gene-level 30 UTR lengths (data not shown).

Another recent study using developing cortical neurons in cul-

ture found that neurite-localized mRNAs preferentially express

distal alternative last exons (ALEs) (Taliaferro et al., 2016), but

this was not seen for localized RNAs in mature hippocampal

CA1 neurons in vivo (Tushev et al., 2018). In order to determine

whether our hippocampal dendritic RNAs preferentially express

ALEs, we identified GENCODE-annotated transcripts with ALE

isoforms but found that because of overlapping last exons,

many transcripts could not be distinctly classified. Instead, we

classified proximal and distal 30 UTRs using differential 30 UTR
start sites and compared isoform-specific expression (in tran-

scripts per million [TPM]) for transcripts with RNA-seq signal

spanning a proximal and a distal 30 UTR. We found a general

bias toward higher expression for the distal 30 UTR in all our

RNA lists (Figure S7), suggesting that distal 30 UTR expression

is a neuron-wide phenomenon, independent of localization.

These data are consistent with those of Taliaferro et al. (2016)

in that they also reported an increase in distal ALE expression

with neuronal differentiation in Cath.a-differentiated (CAD) and

human neural precursor (NPC) cells.

We were also interested in knowing whether codon use, as a

proxy for optimal translation, was different in dendritically local-

ized RNAs compared with RNA retained in cell bodies or from

non-pyramidal neurons. To test this, we used the codon adapta-

tion index (CAI), which measures the deviation of a given coding

sequence froma reference set (Nakamura et al., 2000; Sharp and

Li, 1987). Because average CAI per transcript positively corre-

lates with coding sequence (CDS) length (the longer the tran-
script, the less rare codons affect average CAI), we compared

the percentage of low-CAI codons (CAI% 0.5) per detected tran-

script for each RNA list. We found that our high-confidence, cell-

type-enriched dendritic transcripts showed significantly fewer

percentage of low-CAI codons per transcript compared with

the cell body-retained RNAs (p = 2.23 3 10�25, Wilcoxon rank-

sum test with continuity correction) and non-pyramidal RNAs

(p = 1.463 10�8, Wilcoxon rank-sum test with continuity correc-

tion; Figure S7), suggesting that dendritic transcripts have

slightly more optimal CDS, although the differences we detected

across RNA lists were small (cell-type-enriched dendritic tran-

scripts 9.74% low-CAI codons per transcript versus cell body-

retained transcripts 10.9% and non-pyramidal transcripts

10.2% low-CAI codons per transcript).

When comparing isoform-specific expression across all de-

tected transcripts, we identified thousands of differentially

spliced isoforms across cell types and compartments (3,298

differentially spliced transcript isoforms from 2,111 unique genes

across all comparisons; hits were defined as having a linear fold

changeR 1.5 and an adjusted p value of%0.05; Table S3). Inter-

estingly, only a minor percentage of isoform hits came from cell

body comparisons (e.g., CA1 cell body versus CA2 cell body,

191 differentially spliced transcript isoforms from 119 unique

genes), suggesting that mature hippocampal neurons over-

whelmingly express the same isoforms in similar proportions

for co-expressed genes, albeit with nearly 200 exceptions. In

contrast, the vast majority of differentially expressed isoform

hits came from dendrite comparisons (3,137 differentially spliced

transcript isoforms from 2,037 unique genes). A subset of these

hits overlapped with the two-way comparison (e.g., CA2 cell

body to dendrite versus CA1 cell body to dendrite, 373 differen-

tially spliced transcript isoforms from 281 unique genes), sug-

gesting either cell-type and/or compartment-specific splicing.

Next, we further investigated specific examples of subregion

and/or compartment-specific differential isoform expression.

The known dendritic RNA encoding the a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptor 1, Gria1

(Grooms et al., 2006; Ju et al., 2004), has two isoforms that differ

by mutually exclusive exons within the coding region, termed flip

and flop isoforms (Sommer et al., 1990). As previously demon-

strated for cell body expression (Sommer et al., 1990), CA1

and DG cell bodies express both isoforms, with the flop isoform

being more abundant, whereas areas CA2 and CA3 cell bodies

express predominantly the flip isoform (CA2 CB versus CA1

CB, log2 FC = 2.5, p = 1.20 3 10�10; CA2 CB versus DG CB,

log2 FC = 2.0, p = 7.543 10�7; Figures 4A and 4B). Interestingly,

these isoform preferences were not maintained in dendrites, as

both isoforms were detected in all subregion dendrites at similar

ratios, albeit at lower levels (CA2 DE versus CA1 DE, p > 0.05;

CA2 DE versus DG DE, p > 0.05; Figure 4B).

As an example of cell-specific dendritic RNA splicing, we

found that Shank2 RNA is found predominantly expressed as

two isoforms that differ in their 50 sequences, the longer of which

is statistically more abundant in CA1 and CA2 cell bodies and

dendrites compared with the shorter isoform that is more abun-

dant in CA3 and DG cell bodies and dendrites (CA2 CB versus

DG CB, log2 FC = 6.8, p = 3.08 3 10�4; CA2 DE versus DG

DE, log2 FC = 5.8, p = 1.81 3 10�6; Figures 4C and 4D). Both
Cell Reports 29, 522–539, October 8, 2019 527



Figure 4. Subregion- and Compartment-Specific Splicing of Hippocampal RNAs

(A) Gria1 isoform-specific sashimi plots for CA1 and CA2 cell body samples visualizing the summed counts per exon from three replicates with the arcs rep-

resenting the summed number of junction spanning reads.

(B) Gria1 bar plot for all groups (CA2CB versus CA1CB, log2 FC = 2.5, p = 1.20 3 10�10; CA2CB versus DGCB, log2 FC = 2.0, p = 7.54 3 10�7; CA2DE versus

CA1DE, p > 0.5; CA2DE versus DGDE, p > 0.5).

(C) Shank2 isoform-specific sashimi plots for CA2 and DG cell body and dendrite samples.

(legend continued on next page)
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Shank2 isoforms are more abundant in dendrites compared with

cell bodies, but the dendritic isoforms are found at levels propor-

tional to their respective cell body levels (Figure 4D). These find-

ings are suggestive of active dendritic targeting that is consistent

with previous studies on Shank RNA localization in rat CA1

(Epstein et al., 2013).

As discussed above, we detected more than 10-fold more

splicing events in dendrite comparisons (i.e., CA1 dendrites

versus CA2 dendrites; Table S3) compared with cell body com-

parisons, suggesting that differential isoform expression in the

adult hippocampus may be driven predominantly by different

classes of cells (i.e., interneurons or astrocytes), as opposed to

subregion- or compartment-specific expression. One example

is the brain-derived neurotrophic factor (BDNF) receptor Ntrk2

(also known as TrkB), of which we detected two major isoforms

in each compartment (Figures 4E and 4F). The cell body samples

predominantly expressed the full-length, catalytically active

Ntrk2 isoform (referred to as TK+) and the dendrite samples pre-

dominantly expressed a truncated Ntrk2 isoform that lacks tyro-

sine kinase activity (referred to as TK�) (Middlemas et al., 1991)

and is thought to be solely expressed by astrocytes (Rose et al.,

2003). We determined the level of neuron versus astrocyte Ntrk2

in dendrites by comparing the isoform-specific counts and found

no differences in neuronal Ntrk2 across subregions. However,

we did find that astrocyte Ntrk2 in DG dendrites was greater

compared with that found in CA3 dendrites (DG DE versus

CA3 DE, log2 FC = 1.3, p = 5.433 10�3; Figure 4F). We validated

this finding using isoform-specific smFISH and found that indeed

DG dendrites expressed more astrocyte-Ntrk2 compared with

neighboring subregion dendrites (Figure 4G). We also detected

the astrocyte-Ntrk2 specific probe in all subregion cell bodies,

suggesting that, at least in the hippocampus, pyramidal neurons

express both Ntrk2 isoforms and the astrocyte-Ntrk2 expressed

in dendrites appears to come from both pyramidal and non-

pyramidal cell expression.

Mitochondrial Pathways Are Overrepresented in CA2
Cell Bodies and Dendrites
Next, in order to determine whether differences in RNA might

reveal functional differences between subregions, we performed

Gene Ontology analyses on differentially expressed RNAs from

comparisons with CA2. We limited our analyses to RNAs ex-

pressed above a high threshold (>9 log2 counts) in at least one

cell body sample to enrich for genes of neuronal origin and per-

formed hypergeometric enrichment analyses on comparisons

between CA2 cell body and dendrite samples to neighboring

subregion cell body and dendrite samples, respectively, to iden-

tify gene ontologies over- and under-represented in each com-

parison. To easily visualize the gene ontologies enriched in two
(D) Shank2 bar plot (CA2CB versus DGCB, log2 FC = 6.8, p = 3.083 10�4; CA2CB

5.8, p = 1.81 3 10�6; CA2DE versus CA3DE, log2 FC = 3.2, p = 5.26 3 10�5).

(E) Ntkr2 isoform-specific sashimi plots for CA2 cell body and dendrite samples.

(F) Ntkr2 bar plot (DGDE versus CA3DE, log2 FC = 1.3, p = 5.43 3 10�3).

(G) Confocal images of isoform-specificNtrk2 smFISH in each subregion.Ntrk2-p

shorter TK� isoform. Grayscale inverted images are shown to better visualize Nt

appears white, and the signal in the cell body layers indicates that both isoforms

Scale bars, 50 and 250 mm. Error bars represent ± SD. *p < 0.01. For full statistic
or more comparisons, we hierarchically clustered the top 10

enrichment p values from each comparison, which we clustered

into 10 groups by similar enrichment (Figure 5A; Tables S4

and S5).

As expected for hippocampal neurons, the gene ontologies in

the top cluster represented neuronal systems and synaptic

transmission, and they were significant in CA2 cell body and

dendrite-enriched comparisons (up), as well as CA2 cell body

and dendrite-depleted comparisons (down; and thus enriched

inDG,CA1, andCA3 cell body and dendrite samples) (Figure 5B).

Unexpectedly, multiple mitochondrial pathways were present in

the cluster representing pathways enriched in CA2 cell body and

dendrite comparisons but not enriched in DG, CA1, or CA3 cell

body and dendrite comparisons (cluster 3, Figure 5B), suggest-

ing that mitochondrial function might be different in CA2. A sub-

set of gene ontologies is visualized in a gene-concept network in

Figure 5C, showing RNAs with significant enrichment in three or

more CA2 cell body and/or dendrite comparisons.

Mitochondrial Calcium Uniporter RNA Is Highest in CA2
and Regulates Synaptic Plasticity
Consistent with the Gene Ontology data, mitochondrial genes

that regulate mitochondrial calcium signaling were enriched in

CA2 and include the mitochondrial calcium uniporter (Mcu) and

its calcium-sensing regulatory protein Micu1(Figure 6A). Both

Mcu and Micu1 were present in dendrite samples and validated

with smFISH (Figure 6B). One of the strengths of smFISH is the

ability to accurately quantify the number of RNA molecules in a

given region. Our RNA-seq and smFISH counts were in strong

agreement for those tested, including Mcu (Figure 6C).

Previous studies have reported that mitochondrial RNAs are

present in axons and dendrites (Aschrafi et al., 2016; Lein

et al., 2007; Shigeoka et al., 2016; Yoon et al., 2012), but their po-

tential role(s) in synaptic plasticity in dendrites have not been

explored. Recent studies have shown that the stoichiometric ra-

tio of MICU1 to MCU dictates the amount of calcium uptake into

mitochondria in various tissues, including the heart and liver

(Paillard et al., 2017). With both smFISH and RNA-seq data, we

find that CA2 neurons have the lowest Micu1-to-Mcu ratio

compared with neighboring subregions (Figure 6D), suggesting

that CA2 neurons might have more mitochondrial calcium up-

take. Given the important role of calcium in inducing synaptic

plasticity, and previous data showing calcium buffering and

extrusion are 4 times greater in area CA2 dendrites and spines

compared with area CA1 dendrites and spines (Simons et al.,

2009), we hypothesized that greater mitochondria calcium influx

in CA2may be contributing to the robust calcium handling in CA2

neurons that is known to restrict plasticity there (Simons et al.,

2009). Indeed, we found that inhibiting mitochondrial calcium
versus CA3CB, log2 FC = 4.5, p = 1.273 10�3; CA2DE versus DGDE, log2 FC =

an (magenta) detects both isoforms andNtrk2-astrocyte (cyan) detects only the

rk2-astrocyte dendritic expression. Note that co-localization of the two probes

are expressed in hippocampal neurons.

s, see Table S3.
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Figure 5. Genes Involved in Mitochondrial Function Are Overrepresented in CA2 Cell Bodies and Dendrites

(A) Heatmap of Gene Ontology p values for each cell body and dendrite comparison with CA2, clustered by similarity. p values shaded in red are enriched in CA2

(up), and p values in blue are depleted in CA2 (down) and therefore enriched in the other cell type. See Table S5 for full statistics.

(B) Zoom in of clusters 3, 8, 9, and 10 from (A). Mitochondrial gene ontologies with enrichment in two or more ‘‘up’’ comparisons but no enrichment in ‘‘down’’

comparisons are denoted in red.

(C) Cnet plot made with a subset of gene ontologies from (B) with two or more genes statistically enriched in three or more CA2 ‘‘up’’ comparisons.
uptake byMCUwith Ru360 (10 mM) permitted long-term depres-

sion in CA2 neurons when given an LTP pairing protocol that

typically has no effect on CA2 post-synaptic currents (PSCs)

(Ru360-LTP = 42% ± 11% of baseline PSC amplitude, Ru360-

no LTP = 82% ± 13% of baseline PSC amplitude; p = 0.039,

two-tailed t test; Figures 6E and 6F), suggesting that mitochon-

drial calcium uptake is changing the way synaptic calcium levels

are influencing plasticity in CA2.

We found no statistically significant difference in CA2 baseline

synaptic responses when mitochondrial calcium uptake was

blocked by Ru360 (Figures 6G and 6H). However, in CA1 we

found a short-term enhancement of baseline synaptic responses
530 Cell Reports 29, 522–539, October 8, 2019
when mitochondrial calcium uptake was blocked by Ru360

(p = 0.0457, two-tailed t test; CA2 Ru360, 84% ± 14%; CA1

Ru360, 137% ± 19%; Figures 6G and 6H), indicating that mito-

chondrial calcium uptake differs between subregions.

CA2 Neurons Have Greater mtDNA Content and
Mitochondrial Respiration
In addition to the enrichment of nuclear-encoded mitochondrial

genes in CA2, we found that CA2 cell body samples had the

most RNA-seq reads thatmapped tomtDNA (or chromosomeM)

(compartment p < 0.0001, cell type p = 0.0022, interaction

p = 0.0297; CB: CA2 versus CA1, p = 0.0017; CA2 versus CA3,



Figure 6. Mitochondrial Calcium Uptake Regulates Synaptic Plasticity in CA2

(A) smFISH images of Rgs14 (CA2 marker), Mcu and Micu1 mRNA in the mouse hippocampus. The nuclear marker DAPI is counterstained in blue.

(B) Grayscale inverted images of Mcu and Micu1 in each subregion to visualize expression in dendrites.

(C) Correlation of smFISH and RNA-seq values for Mcu expression.

(D) Correlation of smFISH and RNA-seqMicu1:Mcu ratios. A recent study suggests that the lower the ratio, the greater mitochondria calcium influx (Paillard et. al.

2017).

(E) Whole-cell voltage-clamp recordings from CA2 neurons in acute mouse hippocampal slices. PSCs in CA2 are normally unchanged in response to an LTP

‘‘pairing protocol’’ (denoted by black arrow; see STARMethods), however, with MCU blocker Ru360 (10 mm) in the patch pipette, the protocol results in synaptic

depression. Representative traces at the time points indicated are shown.

(F) Average amplitudes (±SEM) from the last 5 min of recording normalized to baseline (*p = 0.039, two-tailed t test; Ru360, 82 ± 13%, n = 5 cells from four mice;

Ru360 + pairing, 42 ± 11%, n = 7 cells from five mice).

(legend continued on next page)
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p = 0.2934; CA2 versus DG, p = 0.0020; two-way ANOVA with

Dunnett’s post hoc tests; N = 3; Figure 7A). We did not detect

any differences among dendrite samples, however (DE: CA2

versus CA1, p = 0.9843; CA2 versusCA3, p = 0.1810; CA2 versus

DG, p = 0.0703; two-way ANOVA with Dunnett’s post hoc tests;

N = 3; Figure 7A). These data suggest that either CA2 neurons

have greater levels of mtDNA transcription or a greater amount

of mtDNA. To determine whether CA2 neurons have a greater

number of mtDNA copies per cell compared with neighboring

subregions, we performed LCM and extracted genomic DNA

for qPCR. Indeed, we found that CA2 and CA3 neurons had

more than twice the amount of mtDNA per cell (normalized to

ActB DNA) compared with CA1 and DG neurons (compartment

p < 0.0001, cell type p < 0.0001, interaction p < 0.0001; CB:

CA2 versus CA1, p = 0.0001; CA2 versus CA3, p = 0.4828;

CA2 versus DG, p = 0.0001; two-way ANOVA with Dunnett’s

post hoc tests; N = 3; Figure 7B). Again, we did not detect any

differences among dendrite samples (DE: CA2 versus CA1,

p = 0.9583; CA2 versus CA3, p = 0.9229; CA2 versus DG,

p = 0.1581; two-way ANOVA with Dunnett’s post hoc tests;

N = 3; Figure 7B). To visualize this difference, we also performed

smFISH to detect mtDNA, which is possible because of the

plasmid-like form of mtDNA. We detected a similar 2-fold

greater mtDNA content in CA2 and CA3 neurons compared

with CA1 and DG neurons (compartment p < 0.0001, cell

type p < 0.0001, interaction p < 0.0015; CB: CA2 versus CA1,

p = 0.0007; CA2 versus CA3, p = 0.8456; CA2 versus DG,

p = 0.0001; two-way ANOVA with Dunnett’s post hoc tests;

N = 4; Figures 7C and 7D). Interestingly, in contrast to what we

found using qPCR, smFISH revealed a significantly lower

amount of mtDNA in CA1 dendrites, compared with neighboring

subregions (DE: CA2 versus CA1, p = 0.0018; CA2 versus CA3,

p = 0.6867; CA2 versus DG, p = 0.8604; two-way ANOVA with

Dunnett’s post hoc tests; N = 4).

In order to visualize mitochondria in CA2 neurons, we per-

formed immunohistochemistry using enzymes known to localize

to mitochondria, including the citric acid cycle (TCA) enzyme py-

ruvate dehydrogenase (PDH) and the electron transport chain

(ETC) enzyme cytochrome c oxidase IV (COXIV). We found that

staining for PDH (Figure 7E) and COXIV (Figure S5) was most

robust in CA2 and CA3 neurons. However, we did not detect

any qualitative differences in mitochondrial appearance at the

level of electron microscopy between areas CA1 and CA2

(data not shown). Interestingly, PDH and COXIV are both impor-

tant in the generation of energy, and their enzymatic activities are

positively regulated by mitochondrial calcium (Llorente-Folch

et al., 2015; McCormack et al., 1990).

In fact, several enzymes within the TCA cycle were enriched in

CA2 (e.g., Aldh2, Aco2, Ldhb, Dlat, Pdha1, Pdk2, Sdhd, Ogdh,

Cs, Atp5g1; Figure 4C), and when coupled with the fact that

the 13 proteins encoded within mtDNA are all involved in oxida-

tive phosphorylation, we hypothesized that mitochondria in CA2
(G) Whole-cell voltage-clamp recordings from CA1 and CA2 neurons in acute mo

Representative traces at the time points indicated are shown.

(H) Average PSC amplitudes (±SEM) fromCA2 and CA1 at the 15min time point no

cells from five mice; CA1 Ru360, 137 ± 19%, n = 9 cells from five mice).

Scale bars, 250 and 50 mm. PSC, post-synaptic current.
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neurons might be producing energy at a higher rate than neigh-

boring subregions. To test this, we measured superoxide pro-

duction in each subregion using dihydroethidium (DHE) labeling.

In otherwise untreated mice, we found that CA2 neurons had the

highest level of DHE labeling, indicating that they produce the

most superoxide, consistent with greater levels of mitochondrial

respiration (overall effect of cell type, p = 0.0005; CA2 versus

CA1, p = 0.0038; CA2 versus CA3, p = 0.0023; CA2 versus

DG, p = 0.5723; paired one-way ANOVA with Geisser-Green-

house correction and Dunnett’s post hoc tests; N = 5; Figures

7F and 7G).

DISCUSSION

We sought to determine whether different hippocampal subre-

gions localize distinct subsets of dendritic RNAs that would

reflect their unique forms of plasticity and diverse functions un-

derlying learning and memory. To test this, we generated hippo-

campal subregion- and compartment-specific transcriptomes

with stranded, paired-end reads of sufficient depth to perform

robust differential gene and isoform analyses. We found that

each hippocampal subregion expresses a unique complement

of dendritic RNAs that is distinct compared with neighboring

subregions. We created a web resource (http://splicejam.vtc.

vt.edu) for the community to visualize andmine these differences

across hippocampal cell types and compartments. By focusing

our analyses on CA2, we discovered unforeseen differences in

mitochondrial calcium handling and respiration as being impor-

tant for CA2 plasticity and function. We anticipate that this data-

set will continue to provide insights regarding cell type-specific

regulation in the hippocampus for the field to explore.

Inhibiting Translation Decreases CA2 Synaptic
Responses within Minutes
Local translation of plasticity-related proteins has been shown to

be required for many forms of plasticity and long-term memory

formation (Kandel et al., 2014). Typically, application of transla-

tion inhibitors has no effect on baseline synaptic responses in

the hippocampus. However, their effects become evident only

after LTP induction, when the potentiation slowly decays back

to baseline. The extent of blockade and which phase of LTP is

affected seems to be synapse-dependent (Abraham and Wil-

liams, 2008; Hagena and Manahan-Vaughan, 2013). Thus, we

were surprised to find that blocking translation led to a decrease

in baseline synaptic responses in CA2 neurons. We saw the

same effect using two different inhibitors, anisomycin and cyclo-

heximide, which differ in their modes of action, and the effect

was seen within 5 min, suggesting that the effect was not due

to a loss of protein being trafficked from the cell soma. Thus,

the decrease in synaptic responses in CA2 most likely was due

to a loss of ongoing de novo local translation. Future studies

are needed to identify (the lack of) which protein(s) caused this
use hippocampal slices with MCU blocker Ru360 (10 mm) in the patch pipette.

rmalized to baseline (*p = 0.0457, two-tailed t test; CA2 Ru360, 84 ± 14%, n = 8

http://splicejam.vtc.vt.edu
http://splicejam.vtc.vt.edu


Figure 7. CA2 Neurons Have Greater Mitochondrial Content and Superoxide Production

(A) Transcription of mitochondrial genes on chromosome M (mtRNA) is highest in CA2 cell bodies with no differences detected in dendrites (compartment

p < 0.0001, cell type p = 0.0022, interaction p = 0.0297; CB: CA2 versus CA1, p = 0.0017; CA2 versus CA3, p = 0.2934; CA2 versus DG, p = 0.0020; DE: CA2 versus

CA1, p = 0.9843; CA2 versus CA3, p = 0.1810; CA2 versus DG, p = 0.0703; two-way ANOVA with Dunnett’s post hoc tests; N = 3 mice).

(B) mtDNA copy number quantified using LCM-qPCR is highest in CA2 and CA3 cell bodies with no differences detected in dendrites (compartment p < 0.0001,

cell type p < 0.0001, interaction p < 0.0001; CB: CA2 versus CA1, p = 0.0001; CA2 versus CA3, p = 0.4828; CA2 versus DG, p = 0.0001; DE: CA2 versus CA1,

p = 0.9583; CA2 versus CA3, p = 0.9229; CA2 versus DG, p = 0.1581; two-way ANOVA with Dunnett’s post hoc tests; N = 3 mice).

(C) smFISH images of mtDNA in CA2 and CA1 neurons.

(D) Quantification of smFISH particle counts for mtDNA copy number (compartment p < 0.0001, cell type p < 0.0001, interaction p < 0.0015; CB: CA2 versus CA1,

p = 0.0007; CA2 versus CA3, p = 0.8456; CA2 versus DG, p = 0.0001; DE: CA2 versus CA1, p = 0.0018; CA2 versus CA3, p = 0.6867; CA2 versus DG, p = 0.8604;

two-way ANOVA with Dunnett’s post hoc tests; N = 4 mice).

(E) Confocal image of pyruvate dehydrogenase (PDH) staining in CA2 and CA1 neurons.

(F) Confocal image of an Amigo2-EGFP mouse injected with dihydroethidium (DHE; pseudocolored for intensity) to detect superoxide levels.

(legend continued on next page)
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effect selectively at the CA2 synapses; however, the fact that

continual protein synthesis in dendrites is required for maintain-

ing synaptic responses in CA2 was further motivation for identi-

fying which RNAs are present in CA2 dendrites.

Hippocampal Subregions Express Distinct Dendritic
Transcriptomes
Previous studies have characterized cell-specific hippocampal

transcriptomes at the single cell (Habib et al., 2016; Zeisel

et al., 2015) and population (Cembrowski et al., 2016b) levels.

These rich resources describe distinct transcriptomes for each

major hippocampal subregion cell body but cannot address

whether the corresponding dendrites have distinct transcrip-

tomes, as they are lost when generating single-cell suspensions.

In fact, prior to this work, no study had directly tested whether

different excitatory cell types express distinct dendritic tran-

scriptomes. High-throughput in situ hybridization studies (i.e.,

the Allen Brain Atlas; Lein et al., 2007) identified more than 50

cell-type-enriched dendritic RNAs (such as Adcy1 in CA2), but

the majority of dendritic RNAs are expressed in dendrites at

levels well below the limit of detection for the chromogenic

in situ methods that were used. Studies using microarray tech-

nology identified fewer than 200 RNAs in either adult rat CA1

dendrites (Zhong et al., 2006) or rat hippocampal neurites in cul-

ture (Poon et al., 2006), but these studies showed little overlap,

suggesting that experimental conditions, such as age and/or

days in culture and methods for isolating dendrites and neurites,

may influence which RNAs are identified. The first study to use

modern sequencing techniques on dendrites (Cajigas et al.,

2012) identified more than 2500 RNAs in microdissected rat

CA1 neuropil, a finding that fundamentally changed the way

the field thinks about RNA localization. Since then, there has

been more agreement on how many and which RNAs are den-

dritically localized, at least in CA1 (Ainsley et al., 2014; Cajigas

et al., 2012; Nakayama et al., 2017). Another study looking at

ribosome associated RNAs in cerebellar Purkinje cell (PC) den-

drites saw some overlap with previously published CA1 dendritic

RNAs but also identified PC-specific dendritic RNAs, suggesting

that neurons in different brain regions might localize different

subsets of RNAs (Kratz et al., 2014). However, our goal was to

identify whether different cell types within the hippocampus

that are known to express different forms of plasticity might

also express distinct dendritic RNAs at the gene- and isoform-

specific levels. We were particularly interested in the plasticity-

resistant area CA2, which because of its poorly defined anatom-

ical borders had yet to be precisely investigated. Indeed, we

identified 1,055 cell-type-enriched dendritic RNAs, suggesting

that depending on cell type, synaptic plasticity in the hippocam-

pus may be differentially regulated at the level of local transla-

tion. This finding is consistent with our hypothesis, but we

were still surprised at the large number of differentially ex-

pressed dendritic RNAs (�10% of all RNAs expressed in hippo-

campal neurons), which underscores the magnitude of RNA
(G) Quantification of the average DHE fluorescence in each subregion normalized

p = 0.0038; CA2 versus CA3, p = 0.0023; CA2 versus DG, p = 0.5723; paired one-w

N = 5 mice).

Scale bars, 10 mm in (C) and (E), 100 mm in (F). *p < 0.05, **p < 0.01, ***p < 0.001
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regulation in dendrites and its potential impact on synaptic and

behavioral plasticity. In agreement, we found that neuronal

gene expression was over-represented in our high-confidence

dendritic RNA list, but we cannot definitively rule out that some

unvalidated hits may be due to differences in the composition

of contaminating cell types. Dendritic RNAs require validation

with smFISH to confirm dendritic expression. Nonetheless, this

dataset raises the question of whether there are cell type-spe-

cific deficits in RNA localization that contribute to certain disease

phenotypes. Moreover, recent work has shown that local trans-

lation also occurs in other classes of cells, such as astrocytes

(Boulay et al., 2017; Sakers et al., 2017) and GABAergic neurons

(Ouwenga et al., 2019) in addition to glutamatergic neurons both

pre- and post-synaptically (Hafner et al., 2019), thus determining

whether other classes of cells also express distinct localized

transcriptomes, either within or across brain regions, will be of

interest.

Cell-Type-Enriched Dendritic RNAs Have Longer UTRs
and Are Abundantly Spliced
Wewere interested in identifying cell- and compartment-specific

differences in isoform expression because it is well known that

cis-regulatory elements and structures within RNA sequences

(commonly in the 50 and 30 UTRs) together with trans-acting fac-

tors, such as RNA binding proteins (RBPs), dictate every step of

RNA metabolism, from transcription to degradation (Moore,

2005). Many studies have shown that 30 UTRs are necessary

and sufficient for dendritic localization, for example, Camk2a

(Mori et al., 2000) andBdnf (An et al., 2008; Andreassi and Riccio,

2009). Longer 30 UTRs provide larger platforms for RBPs and

micro-RNAs (miRNAs) for greater regulatory control, and longer

30 UTRs have been described for activity-regulated (Chen et al.,

2017; Dalal et al., 2017) and neurite-localized RNAs (Ouwenga

et al., 2017; Tushev et al., 2018). Consistently, we also found

that our high-confidence dendritic RNAs have longer 30 UTRs
compared with both cell body-retained and non-pyramidal

RNAs. Furthermore, our high-confidence dendritic RNAs that

are protein coding are also more likely to contain a 30 UTR and

slightly less likely to have rare or low-CAI codons compared

with both cell body-retained and non-pyramidal RNAs. More-

over, in addition to the hundreds of cell type-specific alternative

splicing differences we detected, we found that RNAs in each of

our lists preferentially express distal over proximal 30 UTRs.

Taken together, these data indicate that neuronal 30 UTRs often

exhibit cell type-specific expression, are longer for localized

transcripts and generally include distal exons.

Completely unexpected was that the majority of our splicing

differences were from comparisons of dendrite samples across

subregions. Further analyses pointed to a combination of

potential explanations, including differential splicing from non-

pyramidal cells within the dendritic lamina (such as Ntrk2) and

subregion-specific dendritic splicing (such as Shank2), poten-

tially involving local RNA processing (Andreassi et al., 2019;
to the mean per animal (overall effect of cell type p = 0.0005; CA2 versus CA1,

ay ANOVA with Geisser-Greenhouse correction and Dunnett’s post hoc tests;

, and ****p < 0.0001. Data are presented as mean ± SEM.



Tushev et al., 2018). Studies that have assessed alternative

splicing in the hippocampus have typically done so with hippo-

campal lysates, which may have masked subregion- and/or

cell-specific differences. This dataset will provide a wealth of in-

formation to future studies interesting in alternative splicing and

RNA regulation in specific cell types of the hippocampus.

The Mitochondrial Calcium Uniporter Is Highest in CA2
and Regulates Synaptic Plasticity
Until recently, area CA2 has often been overlooked in the litera-

ture, likely because of its small size and poorly defined borders

(Dudek et al., 2016). We therefore wanted to focus our analyses

on area CA2 to try to identify classes of genes that might be

involved in regulating unique CA2 properties, such as its resis-

tance to plasticity, and after seeing the effects of protein synthe-

sis inhibitors, baseline synaptic transmission. Unexpectedly, we

found that RNAs implicated in mitochondrial pathways were

overrepresented in CA2 cell bodies and dendrites compared

with neighboring subregion cell bodies and dendrites. Specif-

ically, we found both nuclear- and mitochondrially encoded

RNAs were highest in CA2, the latter of which in cell bodies

was due to the mtDNA’s being present in CA2 at double the

levels of neighboring CA1 and DG. We also identified a number

of RNAs encoding proteins with known roles in mitochondrial

calcium signaling, including those in the MCU complex, that

were high in CA2 cell bodies and dendrites. Recently these

data have been substantiated in a proteomic analysis of hippo-

campal tissue (Gerber et al., 2019).

Despite decades of study, the molecular identity of MCU was

only recently identified by two groups in 2011 (Baughman et al.,

2011; De Stefani et al., 2011). Since then, the molecules that

make up and regulate the MCU complex are beginning to be

identified (Kamer and Mootha, 2015). Interestingly, several but

not all of the proteins thus far associated with MCU are enriched

in CA2, including Mcu, Micu1, and Mcur1, but not others like

Micu2, Micu3, and Miro1 (also known as Rhot1) (Niescier et al.,

2018), and some are even depleted from CA2, such as

Slc25a23 and Mcub (also known as Ccdc109b and known to

have a dominant-negative effect on mitochondrial calcium up-

take in HeLa cells (Raffaello et al., 2013)). Interestingly, loss of

function mutations in MICU1 leads to intellectual disability and

myopathy in humans (Logan et al., 2014). A previous study eval-

uated the cell type-specific expression of the MCU complex in

mouse and human hippocampus, but assessed only CA1 and

CA3, and found similar expression differences in CA3 as we

found in CA2 (Márkus et al., 2016). This is not surprising given

that we found CA2 and CA3 cell body transcriptomes highly

correlate with each other and have fewer differentially expressed

genes when compared with each other versus compared with

CA1 or DG (Table S3).

We also found that blocking mitochondrial calcium uptake

altered the way plasticity is controlled at CA2 synapses. Specif-

ically, blocking mitochondrial calcium uptake prior to giving an

LTP pairing protocol, which would normally result in LTP in

CA1 and no change in CA2, now induced long-term depression

(LTD) in CA2 neurons. These data indicate that mitochondrial

calcium uptake plays a critical role in regulating synaptic calcium

levels, such that when mitochondrial calcium uptake is blocked,
synaptic calcium levels rise enough to allow LTD, but not to a

level high enough to allow LTP. Thus, we propose that high mito-

chondrial calcium uptake is another plasticity limiting mecha-

nism restricting LTP in CA2.

We also found that blocking mitochondrial calcium uptake

produced cell type-specific effects on baseline synaptic re-

sponses. Namely, Ru360 enhanced baseline responses re-

corded from CA1 neurons while having little to no effect on those

recorded from CA2 neurons. We speculate that differences in

downstream calcium handling between CA1 and CA2 neurons

contributed to the potentiation of responses in CA1 neurons

but not in CA2 neurons. Indeed, a recent study showed that

LTP induction at the CA3-CA1 Schafer collateral synapse is

blunted when mitochondrial fission, a process that promotes

mitochondrial calcium uptake, is blocked (Divakaruni et al.,

2018). Thus, mitochondrial calcium uptake at synapses is

regulated in a cell type-specific manner to differentially affect

plasticity.

It remains an open question how mitochondria and local pro-

tein synthesis in dendrites are linked. A recent study found that

locally fragmenting mitochondria in dendrites of neurons in cul-

ture resulted in fewer newly synthesized proteins and prevented

the increase in spine head volume after a synaptic stimulation

protocol (Rangaraju et al., 2019). Previous studies have shown

in developing axons both in vitro and in vivo that mitochondria

and RNA granules localize to axon branchpoints and that mito-

chondria provide ATP for translation of RNAs that promote

actin-dependent branching (Spillane et al., 2013; Wong et al.,

2017). Nuclear-encoded mitochondrial RNAs in axons have

also been proposed to maintain mitochondrial function during

neurite outgrowth (Gale et al., 2018; Cioni et al., 2019). Likely,

then, local translation of mitochondrial RNAs will affect dendritic

processes such as synaptic activity, but future studies testing

how these processes interact are needed.

Mitochondrial Respiration Is Highest in CA2
Given that mitochondrial calcium levels positively regulate mito-

chondrial respiration (Llorente-Folch et al., 2015), we tested

whether CA2 neurons produce more superoxide or reactive

oxygen species (ROS) compared with neighboring subregions.

We found that indeed CA2 neurons produced the most superox-

ide as indicated by higher levels of DHE staining, which is consis-

tent with greater levels of mitochondrial respiration. Perplexingly,

we detected the highest DHE staining in the CA2 cell body layer,

and we failed to detect any differences across the dendritic

laminae. We reason that DHE histology might not be sensitive

enough to reveal differences, if any, in dendritic ROS production.

One reason CA2 neurons may need greater levels of respiration

is because of their higher average firing rate compared with

neighboring hippocampal neurons in CA1 and CA3 (Alexander

et al., 2016; Lu et al., 2015; Mankin et al., 2015). Notably, Mcu

levels and the DHE staining both taper into CA3a, declining in in-

tensity the more proximal they are to the DG. This is consistent

with the mean firing rate gradient previously documented from

CA2 to CA3 (Lu et al., 2015).

Moreover, with CA2 having the highest basal levels of

ROS, one might conclude that CA2 neurons should be more

vulnerable to neuronal insults, which are typically exacerbated
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by mitochondrial dysfunction (Wang and Michaelis, 2010). How-

ever, it seems that the opposite is true, as CA2 neurons are resis-

tant to neuronal injury in humans and animal models, such as

with seizure and traumatic brain injury (Friedman et al., 2015; Kir-

ino, 1982; Nadler et al., 1978; Sloviter et al., 1991; Yang et al.,

2000). We speculate that this resistance might be due to a com-

bination of factors intrinsic to CA2, such as the potential for

higher glutathione activity (Gsto1 is highest in CA2 neurons

and dendrites) or greater calcium buffering and extrusion capac-

ity (Simons et al., 2009) (of which mitochondria may play a role),

both of which are known to contribute to the selective (in)vulner-

ability of neurons to oxidative stress. Further research is needed

investigating how these processes work in concert to affect

CA2 resistance to cell death, and we foresee this dataset

being a fruitful resource for generating and informing future

hypotheses implicating subregion-specific roles in disease

pathophysiology.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

For all experiments, except electrophysiology experiments, adult male and female Amigo2-EGFP transgenic mice (GENSAT founder

line LW244 RRID: MMRRC_033018-UCD) that had been bred for at least 10 generations onto C57BL/6J background were used. For

electrophysiology experiments, C57BL/6J pregnant dams were purchased from Charles River Laboratories. Mice were group

housed under a 12:12 light/dark cycle with access to food and water ad libitum. All procedures were approved by the Animal

Care and Use Committee of NIEHS and were in accordance with the National Institutes of Health guidelines for care and use of

animals.
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METHOD DETAILS

Electrophysiology
Translation inhibitor study

Mice age P13-17 of either sex mice were deeply anaesthetized with pentobarbital (tradename: FatalPlus). Brains were then rapidly

removed and placed in an ice-cold sucrose cutting solution containing the following (inmM): 240 sucrose, 2.0 KCl, 1MgCl2, 2MgSO4,

1 CaCl2, 1.25 NaH2PO4, 26 NaHCO3 and 10 glucose. Parasagittal hippocampal slices (300mm)were obtained using a vibratingmicro-

tome (Leica VT 1000S). As slices were collected, they were placed into a holding chamber with ACSF containing the following (in mM)

124 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 26 NaHCO3, and 17 d-glucose bubbled with 95%O2 with 5% CO2. To recover,

slices were kept in a water bath held at approximately 35� for 30 minutes before being kept at room temperature for the remainder of

the recovery period (minimum 30 minutes).

In vitro whole cell patch clamp recordings were performed on CA2 or CA1 pyramidal cells. During recordings, parasagittal hippo-

campal slices were placed in a submerged chamber and continuously perfused with ACSF (room temperature) at a flow rate of

2ml/minute. All patch clamp recordings were made in voltage clamp mode held at �70mV using patch pipettes fabricated from

borosilicate glass capillaries and pulled using a horizontal puller (P97, Sutter Instrument), with a resistance of 2-5MU. Glass borosil-

icate pipettes were filled with a cesium based intracellular solution containing (inmM): 115Cs-methanesulfonate, 20 CsCl, 2.5MgCl2,

0.6 EGTA, 10 HEPES, 4 Na2-ATP, 0.4 Na-GTP, and 10 phosphocreatine disodium salt, pH 7.2, osmolarity 280-300 mOsm. Postsyn-

aptic responses (PSCs) were evoked every 30 s with a 0.1ms pulse using a 2-contact cluster electrode (FHC, USA), placed in the

stratum radiatum to target Schaffer collateral inputs from CA3. Data was acquired using an Axopatch 200B amplifier (Molecular

Devices) and WinLTP software, filtered at 2kHz and digitised at a sampling rate of 20kHz using Digidata 1322A (Molecular Devices).

The amplitude of PSC responses was measured using a 5-20ms after pulse detection period. Series and input resistance was moni-

tored using a �4mV hyperpolarizing step. Data from experiments with a > 20% change in series resistance were discarded.

Following a 10-minute period of stable baseline responses, cycloheximide (60mM in ACSF,), anisomycin (20mM in 0.1% DMSO) or

vehicle was applied for the remaining duration of the experiment. For plotting and analyzing data, 2 consecutive sweeps (taken every

30 s) were averaged using WinLTP reanalysis software to acquire measurements every minute. PSC amplitude was normalized to

baseline and SigmaPlot was used for graphical representation. For statistical analysis, t tests were carried out using SPSS software

to compare raw PSC amplitude before and after drug or vehicle application. To compare PSC amplitude following cycloheximide and

anisomycin application with their respective vehicle controls, normalized PSC amplitude was compared during the last 10minutes of

application.

MCU inhibitor study

Mice age P13-18 of either sexmice were deeply anaesthetized with pentobarbital (tradename: FatalPlus). We verified by smFISH that

Mcu expression is enriched in CA2 by at least P14 (N = 3 mice, data not shown). Coronal brain slices were cut at 300 mm using a

vibrating microtome (Leica VT 1000S). Drug Ru360 10uM (Millipore Sigma, Cat #557440, Devaraju et al., 2017; Zhou and Bers,

2002) was added to the patch pipet solution and concealed from light. Glass borosilicate pipettes were filled with a potassium glu-

conate internal solution (in mM) 120 K-gluconate, 10 KCl, 3 MgCl2, 0.5 EGTA, 40 HEPES, 2 Na2-ATP, 0.3 Na-GTP, pH 7.2). For LTP

experiments, a pairing protocol was used; 1.5 minutes of 3 Hz presynaptic stimulation (270 pulses) paired with postsynaptic depo-

larization to 0 mV in voltage-clamp mode. Data were collected using Clampex 10.4 and analyzed using Clampfit software (Axon In-

struments). Series and input resistances were monitored by measuring the response to a 10 mV step at each sweep and cells were

included for analysis if < 25% change in series and input resistance.

Laser Capture Microdissection
To precisely delineate the CA2 borders, we used the transgenic mouse line (Amigo2-EGFP) that selectively expresses enhanced

green fluorescent protein (EGFP) in CA2 cell bodies and dendrites (Figure 1). Neighboring subregions were identified using anatom-

ical borders in bright field. Cognizant of the transcriptional heterogeneity in the hippocampus, in particular along the dorsal-ventral

axis (Cembrowski et al., 2016a), we focused on the dorsal hippocampus, which is easily distinguishable from ventral hippocampus in

the sagittal plane. For individual subregions, we focused on the suprapyramidal blade of the dentate gyrus, distal CA3 (closest to

CA2), all of CA2, and the majority of CA1 midway along the proximal-distal axis including both superficial and deep layers (see Fig-

ure 2A). Three 6-8-week-old male mice from separate litters were used for the main study. Tissue was harvested within a 2-hour time

window near the end of the light cycle (3-5pm, lights off 6pm). Mice were deeply anesthetized with Fatal Plus (50mg/kg) before swift

removal of the brain (< 2 min). Brains were bisected in the sagittal plane and individually flash frozen by being placed in a 223 22mm

disposable cryomold (Polysciences, Inc.) filled with Optimal Cutting Temperature compound and submerged in isopentane cooled to

�20C on a dry ice and ethanol slurry. Samples were stored at �80C until LCM.

From each subfield (CA1, CA2, CA3 & DG), approximately 100 eight-micron thick cryosections were collected from the cell body

and apical dendritic regions using a Pixcell II LCM instrument (Arcturus) equipped with a fluorescence microscope and infrared (IR)

laser as described in detail in Farris et al., 2017 (Farris et al., 2017). The number of biological replicates and use of one sex was con-

strained by the cost of sequencing at the coverage depth required for alternative splice variant detection (Sims et al., 2014). Prior to

LCM, a few sections were stained with cresyl violet to verify coordinates (Dorsal Hippocampus: 1.00mm to 2.00mm lateral from

midline in the sagittal plane) using the 1st edition Watson & Paxinos Mouse Brain Atlas (Watson and Paxinos, 2010).
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Whole Transcriptome Microarray
In separate cohorts of adult Amigo2-EGFP male mice (N = 3 mice taken from separate litters), LCM was used mostly as described

above to capture the cell body and apical dendritic region from either CA1 or CA2 using different hemispheres from the samemice. In

contrast to the methods described above, total RNA was extracted using PicoPure RNA Isolation kit (Arcturus), which yielded a

similar concentration of total RNA (5-20ng) but with lower RINs (6.9-7.5). Approximately 5-7 ng of total RNA were amplified as

directed in the WT-Ovation Pico RNA Amplification System (Nugen, San Carlos, CA) protocol, sense-strand cDNA target was

made using the Nugen Encore Exon Module, and after fragmentation the product was labeled with the Nugen Encore Biotin biotin

module. Fourmicrograms (4.0 mg) of amplified biotin-cDNAswere fragmented and hybridized to Affymetrix Mouse Transcriptome 1.0

arrays for 18 hours at 45�C in a rotating hybridization oven. Array slides were stained with streptavidin/phycoerythrin utilizing a dou-

ble-antibody staining procedure and then washed for antibody amplification according to the GeneChip Hybridization, Wash and

Stain Kit and user manual following protocol FS450-0004. Arrays were scanned in an Affymetrix Scanner 3000 and the CEL data files

were obtained using the GeneChip Command Console software.

RNaseq library construction
cDNA libraries were made using the Ovation Universal RNaseq system for mouse (NuGEN, part # 0348) according to the manufac-

turer’s instructions, including the shearing step to 200bp with a Covaris S-series Sonication System, using 1ng total RNA input for

dendrite samples and 5ng total RNA input for cell body samples. The Ovation Universal system affords a number of advantages

for working with minimal amounts of total RNA. First, the sample is not depleted of ribosomal RNA (rRNA) prior to first strand syn-

thesis, which minimizes initial loss of RNA yield. Second, the kit uses both random and poly dT primers to ensure partially-degraded

RNA, noncoding RNA andmRNA are included in the library. Third, the kit preserves strand information, which enables more accurate

determination of isoform-specific expression levels and supports discovery of novel transcripts. Fourth, the increase in library yield

afforded by removing rRNA after library generation minimizes the number of PCR cycles required for low input samples, thereby

decreasing the PCR bias and duplication levels in the libraries (Farris et al., 2017). Samples from each mouse (8 samples/mouse,

cell body and dendrite samples from each subregion, CA1, CA2, CA3 and DG) were processed together without the experimenter

blind to sample IDs. The resulting cDNA libraries were amplified using 16 cycles of PCR prior to quantification using the High Sensi-

tivity DNA kit (Agilent, Cat # 5067-4626) and a 2100 Agilent Bioanalyzer, as well as fluorometrically using Qubit dsDNA HS Assay kit

and a Qubit 2.0 Fluorometer (Invitrogen, Thermo Fisher Scientific). Libraries from one animal were eight-plexed and sequenced on

one high throughput lane on an Illumina NextSeq 500 instrument acquiring 100 bp paired-ends reads to a depth of 50 million reads

per sample (+/� 10 mil). Four samples (out of 24 samples total) had fewer than 60% of paired-end reads mapped, therefore their

libraries were remade and four-plexed on an additional lane as described above. The data are available onGene Expression Omnibus

(GEO) GEO: GSE116343. All code used for generating the data is available in a summary markdown file at https://jmw86069.github.

io/jampack/farrisSeq.html. Normalized data can be downloaded in R as a test dataset for the RNaseq visualization suite ‘‘Jampack,’’

published as an accompaniment to this article.

RNaseq analyses
All sequence data was evaluated for quality using FASTQC (Andrews, 2010). From each RNaseq library, reads were trimmed using

Sickle (v1.33) (Joshi and Fass, 2011), adapters were trimmed using cutadapt (v1.8.1) (Martin, 2011), and only paired readswith a qual-

ity score > 20 and a minimum length of 20 bp were aligned to the GENCODE (vM12) gene models and the mm10 mouse genome

assembly index using STAR (v2.5.1b) (Dobin et al., 2013) or Salmon (v0.9.1, indexed with kmer size 31) (Patro et al., 2017) with

the recommended ENCODE RNaseq parameters (ENCODE Project Consortium, 2012). The four duplicate samples were merged

as technical replicates. Differential gene expression was evaluated in R (v3.4.2) using limma (v3.32.2) (Smyth, 2005) and/or DESeq2

(v1.18.1) (Love et al., 2014) with median normalized Salmon counts for detected genes only. Initially for STAR alignment data, strand-

specific gene counts were produced using featureCounts (v1.5.1) (Liao et al., 2014) with transcripts flattened per gene from

GENCODE (vM12) gene models and differential expression was evaluated using DESeq2. Midway through our analyses, we noticed

that our pipeline was not allocating counts correctly to expected transcripts, so we switched to the pseudocount alignment tool,

Salmon, because it outperformed our pipeline in discriminating isoform-specific abundance. However, because Salmon maps

more low abundance reads, limma proved to be a better tool than DESeq2 to model and normalize the data. The only analyses

that use Salmon and DESeq2 are the gene ontology analyses, where we used gene level data filtered for high abundance genes,

which is unlikely to be affected by differential expression method. STAR alignment data, specifically the junction spanning read

counts, were also used in the sashimi plots to visualize alternative splicing. Differential isoform expression was evaluated in R

(v3.4.2) using limma (v3.32.2) (Smyth, 2005) using median normalized Salmon TPMs for genes with two or more detected isoforms.

RNaseq correlation plots and visualization

Median normalized log2 RNaseq counts from Salmon were centered by the mean per compartment (cell body or dendrite).

Genes were included in downstream gene level analyses (‘detected genes’) if at least one group median had signal above noise

(rowMax R 7 log2 counts). Transcripts were included in downstream transcript level analyses (‘detected transcripts’) if at least

one group mean had signal above noise (rowMax R 2 log2 TPM and rowMax R 5 log2 counts) and a minimum expression

of 10% TPM of the highest expressed isoform. TPM values were used for analyses that were dependent on transcript length

(30UTR length, 30UTR expression and CAI analyses). Correlation heatmaps were generated with the heatmap.3 (v1.1.1) R package
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using ‘‘ward’’ as the hierarchical clustering and ‘‘euclidean’’ as the distance method. All correlations are Pearson unless otherwise

noted.

Cross-correlation with published datasets and microarray

In a previous study (Farris et al., 2017), we cross correlated CA2 cell body transcriptome data (separate cohort of N = 3 male mice

acquired using the same methods described here) with the Hipposeq CA2 transcriptome dataset (GEO: GSE74985, Cembrowski

et al., 2016b). The two datasets correlated with an R = 0.896 using the average log2 counts from genes detected in both datasets,

indicating that the majority of genes were highly correlated across datasets (Farris et al., 2017).

Comparisons with the Cajigas dataset (Cajigas et al., 2012) were performed in R using gene IDs provided in the supplemental ma-

terial for all transcripts identified in CA1 neuropil (11,713; Cajigas Detected) and filtered neuropil transcripts (2,550; Cajigas Filtered).

These lists were compared with our list of putative dendritic CA1 RNAs present in both CA1 cell body and dendrite samples > 0 log2
counts (21,415; Farris Detected) orR 7 log2 counts (10,877; Farris Filtered). Similarly, comparisons with Ainsley et al. (2014) and Na-

kayama et al. (2017) were performed in R using gene ID lists provided in the supplemental material. We attempted to find Entrez IDs

for each gene in order to properly match gene symbols, and we found all but 49 genes in Ainsley and all but 1 gene in Nakayama.

These unidentified genes were still included in the analysis.

To ensure that our RNA lists were enriched or de-enriched with genes expressed in cell types present in each compartment (e.g.,

neuronal gene expression in cell body), we used single cell gene expression data from mouse cortex (http://www.brainrnaseq.org/)

(Zhang et al., 2014) and created cell enriched gene expression lists for Astrocytes, Neurons, Oligodendrocytes, Microglia and Endo-

thelial cells to compare with our RNA lists. We filtered for expressed genes (FPKM > 1 in at least one cell type), log2 transformed the

data, and created lists of genes for each cell class that included genes 2-fold greater than the median. Then we performed hyper-

geometric enrichment to determine which cell classes were overrepresented in each of our RNA lists based on gene expression.

CEL files from the transcriptome array were imported into R and RMA normalized using the Oligos package (v1.42.0) (Carvalho and

Irizarry, 2010). Genes present on multiple rows were collapsed to one row by taking the highest intensity value per sample. Group

mean Log2 intensity values were correlated with the Salmon normalized group means from a subset of the RNaseq data (CA1

and CA2 cell body and dendrite samples). Heatmaps were generated as above, centering by either compartment (cell body or

dendrite) or platform (RNaseq or Array).

30UTR length analyses

Using GENCODE annotated 30UTR lengths per ‘protein coding’ detected transcript, we compared the average 30UTR length from

each gene list.

Alternative splicing analyses

Isoform specific abundances were generated using median normalized TPM from Salmon. Differential isoform expression analyses

were done using the diffSplice function in the R package limma (Smyth, 2005) on detected transcripts (log2 TPM R 2 and log2
counts R 5 and > 10% of TPM for most abundant isoform). Hits across comparisons were defined as log2 fold change of 0.585

and FDR of 0.05. Candidate hits were then evaluated using sashimi plots generated using the R package ‘jampack’.

To determine whether our dendritic RNAs preferentially express ALE-isoforms, we used GENCODE gene models to define prox-

imal and distal ALEs using 30UTR start sites. Then for transcripts harboring the same proximal or distal 30UTR, we took the log2 sum of

the exponentiated TPMs tomeld transcripts per 30UTR.We filtered for detectedmelded 30UTR isoforms (defined as above). We iden-

tified 1397 detected RNAs with 2 or more 30UTRs, of which 1242 had 2 30UTRs and were used for further analysis. Each RNA was

centered by the proximal 30UTR isoform andwe compared the relative isoform expression across sample groups and gene lists. Each

sample group showed the same trend (distal UTR > proximal UTR), and all samples were plotted to obtain an average per compart-

ment (cell body and dendrite) across gene lists.

Codon adaptation index

Using GENCODE annotated CDS regions, codon adaptation indexes were tabulated for each detected ‘protein coding’ transcript

using a mouse-specific codon usage table (Nakamura et al., 2000) and the Seqinr package (Sharp and Li, 1987) in R. Mitochon-

drial-encoded genes were removed from analyses as mitochondrial ribosomes use mitochondrial-encoded tRNAs that specify

different codons than cytoplasmic ribosomes. We found a positive linear relationship between CDS length and average CAI per tran-

script, so we calculated the percentage of codons with low CAI, defined as CAI % 0.5, and compared the averages across groups.

Hypergeometric gene ontology enrichment analyses and visualization

Initially using RNA-seq counts and fold changes obtained from STAR/featureCounts and DESeq2, respectively, we filtered for genes

well above noise (log2R 9) in at least one cell body sample to enrich for pyramidal/granule cells genes, and then further filtered for hits

fromCA2 CA2 cell body and dendrite comparisons that had a fold change of at least ± log2 0.5 with a B-H adjusted p value of% 0.05.

Thenwe took the positive fold change hits (up) and the negative fold change hits (down) from each subregion and compartment com-

parison with CA2 and performed hypergeometric enrichment using Illumina NextBio software (Kupershmidt et al., 2010)(more

recently named BaseSpace Correlation Engine). The top GSEA categories for DE ‘up’ comparisons all had to do with mitochondrial

function.

To confirm and further explore these results, we repeated the analyses using the median normalized RNA-seq counts obtained

from Salmon and fold changes from DESeq2, and filtered for CA2 hits as described above. Based on our results from NextBio,

and our observation that a number of mitochondrial genes were not yet classified into KEGG gene ontology categories, we added

the Mitocarta2.0 (total and cerebrum) gene lists (Floyd et al., 2016) to our GSEA enrichment analyses, which we performed using
Cell Reports 29, 522–539.e1–e6, October 8, 2019 e4

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74985
http://www.brainrnaseq.org/


the mouse transcriptome as background. Using the phyper function in the R base package ‘stats’, we took the top 10 adjusted p

values from each source category (biological process, canonical pathway, cellular compartment, molecular function, andmitocarta2)

per comparison. Thenwe performed hierarchical clustering on the –log 10 adjusted p values across all 12 comparisons (up and down)

using ‘Euclidean’ for distance and ‘complete’ for clustering to identify gene ontologies with similar enrichment across comparisons.

To visualize the mitochondrial genes enriched in CA2 cell body and dendrite samples we made a gene-concept network (cnet) plot

using the multiCnetPlot function in the R package ‘jampack’.

Laser Capture Microdissection for gDNA qPCR
A separate cohort of 6-8 week old Amigo2-EGFP male mice (N = 3 from separate litters) was used to extract genomic DNA for quan-

tification of mtDNA copy number relative to nuclear DNA. From each subfield (CA1, CA2, CA3 & DG), approximately 50 eight-micron

thick cryosections were collected from the cell body and apical dendritic regions as described above. Prior to LCM, a few sections

were stained with cresyl violet to verify coordinates (Dorsal Hippocampus: 1.00mm to 1.50mm lateral from midline in the sagittal

plane) using the 1st edition Watson & Paxinos Mouse Brain Atlas (Watson and Paxinos, 2010). The cell body samples contained

15-16 sections per cap and the dendrite samples contained 7-8 sections per cap. LCM samples were lysed immediately after dissec-

tion with 10 mL of extraction buffer incubated at 65�C for 3 hours (PicoPure DNA Extraction kit, ThermoFisher). Samples were then

spun down and proteinase K was inactivated by heating samples to 95�C for 10min. The genomic DNA samples were used directly

for qPCR.

Quantification of mtDNA copy number using qPCR
Quantitative PCR was performed using a 7500 Fast RT PCR Instrument (Applied Biosystems) and power SYBR-Green master mix

(Applied Biosystems). For the PCR step, reaction volumes of 30 mL contained 0.5ng of LCM gDNA, 1X power SYBR Green buffer

and 500nM of each primer. The primer pairs for Gapdh (Accession Number NM_001289726.1) FW: AGAGACAGCCGCATCTTCTTG

RV: GGTAACCAGGCGTCCGATAC. The primer pairs formtDNA (CytB) (Furda et al., 2014) FW: CCCAGCTACTACCATCATTCAAGT

RV: GATGGTTTGGGAGATTGGTTGATGT. The PCR protocol was done by hot start at 95�C for 10min then denaturing for 15 s at

95�C, annealing for 60 s at 60�C for 40 cycles followed by a melting curve. Under these conditions and using 1ng of control

gDNA extracted from whole hippocampus, Gapdh reached a relative threshold (CT) at 22 cycles andmt-CytB at 20 cycles. All sam-

ples were run in triplicate and displayed a single melting point. PCR products were run on an agarose gel to ensure a single reaction

product of correct molecular weight (117 bp fragment formt-CytB and 223 bp fragment forGapdh). Differential gene expression was

calculated by 2-DCT (mt-CytB normalized to Gapdh) from N = 3 mice. Results are presented as log2 mean values of technical tripli-

cates with standard error of the mean (SEM) referring to biological replicates.

Multiplexed single molecule fluorescent in situ hybridization
Brains from adult male and female C57BL/6J mice were embedded in OCT and sectioned in the coronal plane on a cryostat at 20 mm

and processed for single molecule FISH according to the RNAscope Fluorescent Multiplex kit instructions (Advanced Cell Diagnos-

tics, Hayward, CA). The following probes were used with the RNAscope fluorescent multiplex reagent kit: Rgs14 (Cat #416651),

Pcp4(Cat #402311), Plch2 (Cat #474791), Ptpn5 (Cat #467451), Necab2 (Cat #467381), Rapgef4 (Cat #428851), Adcy1

(Cat #451241), Acan (Cat #439101), Mcu (Cat#482661), Micu1 (Cat#482671), Gsto1 (Cat#482651), Reln (Cat#405981), Slc1a2

(Cat#441341), Synpr (Cat#500961), Lefty1 (Cat#506381), C1qa (Cat#441221), Cldn5 (Cat#491611), and Mt-D-loop (Cat #466241).

smFISH Image Acquisition and Quantification
All images were acquired on a Zeiss 780 or 880 meta confocal microscope using a 40X oil immersion lens. Acquisition parameters

were set using 3plexed negative controls (cDNA probes against bacterial RNAs not present in mouse tissue) in each of the 3 channels

(Alexa 488, Atto 550, Atto 647) so that any signal above the level of background was acquired. Area CA2 borders were identified using

Pcp4 or Rgs14 as molecular markers; areas CA1, CA3 and DG were identified using defined anatomical locations. Each image was

autothresholded and particle number was quantified across the entire image (354.253 354.25 mm) or a square region of interest (ROI,

of constant size) over the cell body layer using the analyze particle function in Fiji (NIH, v2) (Schindelin et al., 2012). The number of

nuclei were counted using the DAPI signal. Particle counts per subregion were averaged across sections (typically 2-4 sections

per animal) to obtain one value per animal, and data are represented as mean particle count across animals ± SEM. For the cell

bodymtDNA particle counts, an ROI was loosely drawn around ten DAPI positive nuclei per subregion per image and particle counts

were taken as described above. For the dendritemtDNA particle counts, a 60 mm2 ROI was placed in stratum radiatum and particle

counts were taken as described above. All statistical analyses were carried out using Graphpad PRISM 7 software, and significance

was determined using an alpha level of 0.05. The experimenter was unable to be blinded for quantification due to prior knowledge of

hippocampal anatomy.

Immunofluorescence
Forty mm thick vibratome-cut brain sections from perfused adult male and female C57BL/6J mice were rinsed in PBS and blocked

for at least 1 hour in 5% Normal Goat Serum (NGS)/0.3% Triton-100x. Sections were incubated in the following primary anti-

bodies: mouse anti-RGS14 (UC Davis/NIH NeuroMab Facility, AB_2179931, RRID:AB_10698026, 1:1000), mouse anti-STEP (Cell
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Signaling, #4817, RRID:AB_2173544, 1:500), rabbit anti-PCP4 (Santa Cruz Biotechnology, sc-74186, 1:500), mouse anti- pyruvate

dehydrogenase E1 (Cell Signaling, AB110333, RRID:AB_10862029, 1:1000), rabbit anti-EFCBP2 (NECAB2) (Novus Biologicals,

NBP1-84002, RRID:AB_11028373, 1:500), rabbit anti-COXIV (Synaptic Systems, 298 003, RRID:AB_2620042, 1:500). Antibodies

were diluted in blocking solution and sections were incubated for 16-20 hours. After several rinses in PBS-T (0.3% Triton-100x),

sections were incubated in secondary antibodies (Alexa goat anti-mouse 488 and Alexa goat anti-rabbit 568, Invitrogen, 1:500)

for 2 hours. Finally, sections were washed in PBS-T and mounted under Vectashield fluorescence media with DAPI (Vector

Laboratories).

In vivo measurement of superoxide production
Adult Amigo2-EGFPmale mice were randomized into two groups (5-6 mice per group) and given two intraperitoneal injections (IP) of

either dihydroethidium (DHE) (ThermoFisherScientific, 27mg/kg in 40% DMSO/Saline, final volume 200ul) (Hu et al., 2006) or vehicle

(40% DMSO/saline) 30 minutes apart. Stock DHE (10mg/ml in 100% DMSO) was diluted with saline immediately prior to each IP in-

jection as the compound in not stable over time at room temperature. Due to the color of the DHE solution, the experimenter could not

be blind to treatment. After 18-20 hours post second injection, mice were deeply anesthetized with fatal plus (50mg/kg IP) and trans-

cardially perfusedwith ice-cold 4%paraformaldehyde. Forty micron sections were cut on a vibratome, mounted onto superfrost plus

slides and coverslipped using Permount mounting media (Fisher Scientific). Note that fluorescence mounting medias (vectashield,

prolong Gold) were not compatible with lasting DHE signal. Images from 4-6 sections per mouse were acquired on a Zeiss epifluor-

escencemicroscope, using 561 laser excitation for visualizing DHE (Tollefson et al., 2003). Vehicle treated animals were used tomea-

sure background fluorescence levels, as CA2 has greater levels of autofluorescence compared with neighboring subregions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise noted, statistical analyses were carried out using R (v3.40) or Graphpad Prism 7 software, and significance was

determined using an alpha level of 0.05. For figures, pairwise statistical comparisons were restricted to CA2 for clarity and brevity,

however, full statistics can be found in the supplemental tables. Statistical details of experiments can be found in the figure legends

and above methods.

DATA AND CODE AVAILABILITY

The RNA-seq andmicroarray data files have been deposited in the NCBI GEO under ID code GSE116343. https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE116343.

All the R code and source data used for analyses in this paper is available at: https://jmw86069.github.io/jampack/farrisSeq.html.

ADDITIONAL RESOURCES

Public website for splicing data visualization: http://splicejam.vtc.vt.edu/.

Public UCSC genome browser track hub link: https://genome.ucsc.edu/cgi-bin/hgTracks?org=mouse&db=mm10&hubUrl=

https://orio.niehs.nih.gov/ucscview/farris/hub.txt&position=chr13:58800000-59150000.

RNA-seq visualization R package ‘Jampack’: https://github.com/jmw86069/jampack.
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