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ABSTRACT The Wnt-dependent, b-catenin-independent pathway modulates cell movement and behavior. A downstream
regulator of this signaling pathway is Dishevelled (Dvl), which, among other multiple interactions, binds to the Frizzled receptor
and the plasmamembrane via phosphatidic acid (PA) in a mechanism proposed to be pH-dependent. While the Dvl DEP domain
is central to the b-catenin-independent Wnt signaling function, the mechanism underlying its physical interaction with the mem-
brane remains elusive. In this report, we elucidate the structural and functional basis of PA association to the Dvl2 DEP domain.
Nuclear magnetic resonance, molecular-dynamics simulations, and mutagenesis data indicated that the domain interacted with
the phospholipid through the basic helix 3 and a contiguous loop with moderate affinity. The association suggested that PA bind-
ing promoted local conformational changes in helix 2 and b-strand 4, both of which are compromised to maintain a stable
hydrophobic core in the DEP domain. We also show that the Dvl2 DEP domain bound PA in a pH-dependent manner in a mech-
anism that resembles deprotonation of PA. Collectively, our results structurally define the PA-binding properties of the Dvl2 DEP
domain, which can be exploited for the investigation of binding mechanisms of other DEP domain-interacting proteins.
INTRODUCTION
Proteins interact with membranes, and depending on the
mode of their association, are usually classified as periph-
eral or integral. Peripheral proteins contact membranes
through different surface moieties, whereas integral proteins
insert into lipid bilayers. A well-characterized peripheral
protein is Dishevelled (Dvl), which is the branch point of
the canonical Wnt/b-catenin signaling pathway. It regulates
cell-fate specification and proliferation, and participates in
the noncanonical Wnt/planar cell polarity (PCP) pathway
to control cell polarization, among other functions (1). Dys-
regulation of Wnt signaling is often associated with human
birth defects, cancer, neurodegeneration, and osteoporosis
(2,3). Whereas Wnt proteins trigger Dvl phosphorylation
(4) and Dvl-dependent signalosome formation at the
boundaries of the plasma membrane in the canonical Wnt
signaling pathway (5), an asymmetric membrane associa-
tion of Dvl is observed in the Wnt/PCP signaling branch
(6). However, it is unknown whether Dvl employs the
same mechanism of membrane targeting in both pathways.
In the Wnt/b-catenin signaling pathway, the absence of Wnt
facilitates the formation of a destruction complex that leads
to cytosolic b-catenin degradation. Binding of a specific
Wnt protein to both the Frizzled (Fz) receptor and LDL-
related protein 5/6 coreceptor complex promotes Dvl
recruitment to the plasma membrane in complex with
axin, a scaffolding protein required for formation of the
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b-catenin destruction complex. Axin sequestration by Dvl
results in dissociation of the b-catenin destruction complex,
resulting in b-catenin accumulation and nuclear trans-
location, which facilitates Wnt-responsive gene transcrip-
tion. The role of Dvl in noncanonical Wnt pathways is
less clear. The PCP pathway relies on formation of the pro-
tein complexes that are asymmetrically distributed in the
cell. DuringDrosophilawing cell polarization, Dvl accumu-
lates distally in complex with other PCP proteins but is
rarely found proximally (7).

Dvl proteins are multifunctional scaffold proteins with
three highly related isoforms in mammals (Dvl1, 2, and 3)
but with only one form found in Drosophila (8). The expres-
sion patterns of these isoforms overlap significantly during
mouse development, suggesting that they have redundant
functions, although unique functional regions have been
identified in Dvl3 (9). Dvl proteins consist of several mod-
ules, including DIX (Dishevelled and axin), PDZ (postsyn-
aptic density 95, disk large, and zonula occludens-1), and
DEP (Dishevelled, Egl-10, and pleckstrin) domains. All
three Dvl domains are critical in the canonical Wnt pathway
(10). Both PDZ and DEP, but not DIX, are necessary for
function of the PCP pathway (10). The DIX domain is
involved in the formation of Dvl dynamic polymers, axin,
actin, and vesicular association (11–13), whereas the PDZ
domain binds to the Fz receptor, which is necessary to
amplify Wnt signaling to downstream effectors (14). The
DEP domain is a conserved module also found in Egl-10,
pleckstrin, and within the regulator of the G protein signal
family including Epac2, the R7 subfamily, and the yeast
Sst2 proteins (15). The C-terminal DEP domain is involved
in Dvl membrane targeting and Frizzled interactions (16).
http://dx.doi.org/10.1016/j.bpj.2014.01.032

mailto:capellut@vt.edu
http://dx.doi.org/10.1016/j.bpj.2014.01.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.01.032&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.01.032
http://dx.doi.org/10.1016/j.bpj.2014.01.032
http://dx.doi.org/10.1016/j.bpj.2014.01.032
http://dx.doi.org/10.1016/j.bpj.2014.01.032


1102 Capelluto et al.
The tertiary structure of several DEP domains displays a
common a/b fold with some differences in the number of
a/b elements (17–19). The presence of a cluster of basic
residues on the DEP domain surface is suggested to be
critical for Dvl membrane targeting (17). More recently,
Simons et al. (20) initially characterized Dvl1 DEP domain
association to the plasma membrane and proposed a mech-
anism in which basic residues, located in helix 3, would
preferentially bind phosphatidic acid (PA). As a result, the
DEP-PA association has been proposed to depend on intra-
cellular pH, as demonstrated by the role of the Naþ/Hþ

exchanger Nhe2 studies (20).
To obtain further insights into the membrane-binding

properties of Dvl, we carried out structural, biochemical,
mutagenesis, and molecular-dynamics simulation studies
of the interaction of the Dvl2 DEP domain with PA. By
obtaining the backbone resonance assignments of the Dvl2
DEP domain and monitoring the nuclear magnetic reso-
nance (NMR) chemical shift changes of the protein induced
by PA, we experimentally identified the amino acids directly
and indirectly associated with lipid binding. Whereas helix
3 and a conserved loop region between b-strand elements 3
and 4 are compromised in PA ligation, conformational
changes in the protein could occur in helix 2 and b-strand
4. Our results also indicate that PA recognition by Dvl2
DEP domain is pH-dependent and occurs with modest
affinity, emphasizing that membrane targeting of Dvl should
be facilitated by additional interactions of the domain with
Fz at nonoverlapping sites.
MATERIALS AND METHODS

NMR spectroscopy

NMR samples contained 0.1–1 mM of uniformly 15N and 15N,13C Dvl2

DEP domain, 90%H2O/10%
2H2O, 20 mM d4-sodium citrate

(pH 5.5–7.5) buffer, 100 mM NaCl, 1 mM d10-dithiothreitol, and 1 mM

NaN3. Lipid binding was monitored after chemical shift perturbations in

the 1H,15N heteronuclear single quantum coherence (HSQC) spectra of

100-mM Dvl2 DEP domain after addition of 16-fold excess of dihexanoyl

PA (DHPA; Avanti Lipids, Alabaster, AL), and was acquired at 25�C using

an Avance III 600 MHz spectrometer (Bruker, Billerica, MA) equipped

with triple-detection standard probes with z-axis pulse field gradients.

The pH of the protein sample was confirmed and adjusted if needed before

each run. Chemical shift perturbations were calculated according to the

following formula (21):

Ddð1H; 15NÞ ¼ �ðDd1HÞ2 þ ðDd15NÞ2=6�0:5:

Triple-resonance experiments of 15N,13C Dvl2 DEP domain (1 mM) were

performed at 25�C on INOVA 600 and 500 MHz spectrometers (Varian,

Cary, NC) equipped with triple-resonance shielded probes with z-axis

pulse field gradients. 1H chemical shifts were referenced using sodium

4,4-dimethyl-4-silapentane-1-sulfonate (50 mM) as an internal reference.

Sequential assignments of the backbone 1H, 13C, and 15N resonances

were made from 1H,15N-HSQC, CBCA(CO)NNH, HNCACB, HNCO,

and H(CCO)NH two-dimensional NMR spectroscopy experiments

(tmix ¼ 50 and 135 ms) (22–24). Spectra were processed with the soft-

ware NMRPIPE (National Institutes of Health, Bethesda, MD) (25) and
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analyzed using the softwares PIPP (National Institutes of Health, Bethesda,

MD) (26) and NMRDRAW (National Institutes of Health, Bethesda,

MD). The resonance assignments of the Dvl2 DEP domain have been

deposited in the Biological Magnetic Resonance Data Bank under acces-

sion No. 19584.
Molecular-dynamics simulations

The mouse Dvl2 DEP domain structure was generated by homology

modeling based on its sequence identity (69.7%) to mouse Dvl1 DEP

(PDB:1FSH; residues 404–502) using AL2TS (http://proteinmodel.org/

AS2TS/AL2TS/al2ts.html) and validated using the SWISSMODEL work-

space (http://swissmodel.expasy.org/). The stability of the Dvl2 DEP

domain structure over time was judged by its root-mean-square deviation

and root-mean-square fluctuation parameters (see Fig. S1 in the Supporting

Material). All simulation preparation steps and analyses were conducted

using the GROMACS software package, Vers. 3.3.3 (http://www.

gromacs.org/) (27). All elements of the system were described by the

GROMOS96 43A1 force field (28). Periodic boundary conditions were

applied in all directions. The van der Waals interactions were truncated at

1.4 nm, with dispersion correction applied to energy and pressure terms

to account for truncation. Nonbonded interactions were calculated using

a twin-range scheme, updating the neighbor list between 0.9 and 1.4 nm

every five simulation steps. The long-range electrostatics was calculated

with the smooth particle-mesh Ewald method (29,30), using fourth-order

spline interpolation and a Fourier grid spacing of 0.12 nm. The real-space

contribution to particle-mesh Ewald was truncated at 0.9 nm. Simulations

were carried out using a leapfrog integrator with an integration time step

of 2 fs. All bonds within protein and lipid molecules were constrained using

the LINCS algorithm (31) and water molecules were kept rigid using the

SETTLE algorithm (32). All systems were energy-minimized using the

steepest-descent method.

For each simulation, three independent trajectories were produced by

generating different random velocities at the outset of equilibration, which

was carried out in two phases. The initial phase employed a canonical

(NVT) ensemble for 100 ps. Temperature was regulated using the Berend-

sen weak coupling method (33). Isothermal-isobaric (NPT) equilibration

was then carried out for an additional 100 ps, using the Berendsen weak

coupling method to regulate pressure at 1.0 bar. During equilibration, posi-

tion restraints were placed on the heavy atoms of the DEP domain. Produc-

tion simulations were carried out for 20 ns in the absence of any restraints,

using the same ensemble as in the NPT stage. In the case of simulations in

the presence of DHPA, the DEP domain was centered in a dodecahedral

simulation box with four DHPA molecules randomly distributed around

the protein in three different configurations. This setup suitably matches

the molar ratio of protein/lipid used in the NMR experiments while avoid-

ing any concentration-dependent artifacts that would arise from using a

1:16 protein/lipid.

The box was filled with simple point-charge water (34) and 100 mM

NaCl. Parameters for DHPA were taken from the headgroups and first six

carbons of the palmitoyl oleoyl PA (POPA) acyl chains (35), substituting

a methyl group instead of a methylene for the sixth carbon in each acyl

chain. Equilibration and simulation parameters are described above, with

simulations conducted at 25�C, corresponding to experimental conditions.

The configuration for the POPA membrane was taken from simulations

conducted by Dickey and Faller (35), applying the same force-field

parameters used in that work. The charge assigned to each lipid headgroup

was –1. The system was then solvated with simple point-charge water (34),

followed by the addition of 100 mM NaCl, giving a final system containing

~29,000 atoms. The system temperature was set at 37�C, above the phase-
transition temperature of POPA (35). Pressure was regulated semiisotropi-

cally using the Berendsen method with a 2.0-ps coupling constant, allowing

the membrane to deform independently in the x-y, and z dimensions. The

electrostatic potential surfaces were calculated using the software DELPHI

(http://compbio.clemson.edu/delphi.php) (36).
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RESULTS

Backbone assignments of the Dvl2 DEP domain

To structurally characterize the Dvl2 DEP domain inter-
action with PA, we assigned the NMR backbone resonances
of the protein. The backbone amide resonances in the
1H,15N HSQC spectra as well as the a- and b-carbons
were sequentially assigned to all non-proline residues based
on an analysis of the correlations observed in CBCA(CO)
NH and HNCACB spectra. The backbone carbonyl reso-
nance assignments were obtained from the HNCO and
HN(CA)CO experiments, and the assignments for the a-
and b-protons were obtained from the HBHA(CO)NH
experiment. Ninety-five percent of 1HN and 15N resonances
of 95 backbone amides (excluding the three Pro residues)
(Fig. 1) and 13C resonances of 92 of the 99 backbone car-
bonyls of the Dvl2 DEP were assigned. NMR signals from
four residues (Ile449, Glu471, Ser498, and Glu499) could not
be assigned. In addition, 96% of Ca and 97% of Cb reso-
nances were assigned. The sequential connectivity of 13Ca
and 13Cb carbons of a representative region of the Dvl2
DEP domain is depicted in Fig. S2.
Structural analysis of Dvl2 DEP domain
interaction with PA

Previous work, using a site-directed mutagenesis approach,
demonstrates that the Dvl1 DEP domain binds acidic phos-
pholipids with a preference for PA (20). However, the muta-
genesis design is based on the exposed positively charged
residues in the protein without any evidence of a direct
role of these amino acids in lipid recognition. To precisely
map the interaction surface between the Dvl2 DEP
domain and PA, we titrated water-soluble DHPA into the
15N-labeled Dvl2 DEP domain and monitored chemical
shift perturbations in 1H-15N HSQC spectra. Several chem-
ical shift changes and line-broadenings were observed at
saturating concentrations of DHPA (Fig. 2, A and B).

Two distinct regions, located at the second helix (residues
461–469) and the fourth b-strand (residues 501–504) of the
Dvl2 DEP were perturbed by DHPA (Fig. 2 B). Additional
backbone perturbations were observed in the DEP N-termi-
nal residues Ser418 and His420 as well as in resonances
corresponding to His490, and Lys494, which are located
between b-strand 3 and 4 near the C-terminus of the protein.
Also, severe line-broadening of NMR signals were found in
residues Asp422, Leu445, Met448, Thr491, Val492, and Lys494.
By mapping the resonance perturbations on the structure of
the Dvl2 DEP domain (Fig. 2 C), we concluded that two
distinct regions on opposite sides of the protein may be
involved in PA binding and/or they underwent a conforma-
tional change upon ligand association. The Dvl2 DEP
domain bound to PA in a fast exchange regime on the
NMR timescale, indicating that the lipid was weakly bound.
DHPA-induced local conformational changes of the Dvl2
DEP domain was followed by monitoring the intrinsic fluo-
rescence of two conserved Trp residues in the protein (Trp444

and Trp461; see Fig. S3, purple boxes). Whereas Trp461 is
located in helix 2, Trp444 is found between b-strands 1 and
2. Interestingly, chemical shift perturbation analysis indi-
cated that the backbone amide resonance of Trp461 shifted
in the presence of DHPA (Fig. 2 A). The observed Dvl2
DEP fluorescence emission trace between 310 and 410 nm
was broad, likely due to the presence of Trp444 and Trp461
FIGURE 1 Backbone amide resonance assign-

ments of the Dvl2 DEP domain. 15N, 1H HSQC

spectrum of 15N-labeled Dvl2 DEP domain.

Selected peaks are labeled with the corresponding

residue numbers. Residues from the vector are

shown with negative numbers.
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FIGURE 2 Contribution of Dvl2 DEP residues to PA binding. (A) 1H,15N

HSQC spectra of 15N-labeled DEP domain in the absence and presence of

16-fold DHPA are superimposed and color-coded (as shown in the key).

(Boxed and labeled) Resonances of amino acids displaying chemical shift

changes upon DHPA binding. (B) The histogram shows normalized chemi-

cal shift perturbations in the backbone amides of Dvl2 DEP domain induced

by DHPA. (Colored dashed lines) Significant changes, based on the magni-

tude of their associated chemical shifts changes (red, Ddaverage þ 2 � stan-

dard deviation / orange, Ddaverage þ 1.5 � standard deviation / yellow,

Ddaverage). (C) Residues that exhibit significant chemical shift perturbations

in panelA are labeled on the Dvl2 DEP surface and color-coded according to

the scale defined in panel B. To see this figure in color, go online.

FIGURE 3 Dvl2 DEP domain PA-binding properties. Representative

tryptophan fluorescence emission spectra of the Dvl2 DEP domain at the

indicated DHPA molar ratios. (Inset) Plot of the reduction of the fluores-

cence emission of Dvl2 DEP domain against DHPA concentration. To

see this figure in color, go online.
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in distinct microenvironments (Fig. 3). Fluorescence emis-
sion of Dvl2 DEP domain was quenched by DHPA, suggest-
ing solvent accessibility of the Trp residue/s of the protein
upon DHPA binding, and saturated at 32-fold excess of the
ligand (Fig. 3) with a KD for DHPA of 4.30 5 0.66 mM
(c2 ¼ 0.00009).
Biophysical Journal 106(5) 1101–1111
Far-UV circular dichroism (CD) analysis of the Dvl2
DEP indicates that the protein exhibited a characteristic
spectrum of an a/b protein (see Fig. S4 A). Addition of
DHPA did not induce major changes in the far-UV spectrum
of the protein (see Fig. S4 A). Although the far-UV CD
results show that no significant changes in secondary struc-
ture are present, evaluation of the near-UV CD spectra was
carried out to confirm that the reduction of fluorescence
intensity observed upon DHPA binding is indeed reflecting
conformational changes in the Dvl2 DEP domain. The near-
UV CD spectrum, which indicates the presence of tertiary
structure in the protein, exhibited significant optical activity
arising from the four Tyr and two Trp residues of the DEP
domain in the 275–300 nm region and a positive signal at
260 nm, probably associated with the four Phe residues
present in the DEP domain (see Fig. S4 B). A reduction of
the amplitude of the CD signal is observed in the 255–265
and 290–300 nm regions when the protein is incubated
with DHPA, indicating that the orientation of aromatic
groups is perturbed in the DEP domain by the presence of
the lipid. Overall, these observations, together with the
comparison of 15N,1H HSQC, and intrinsic fluorescence of
the free and PA-bound Dvl2 DEP domains, suggest that
the protein undergoes a local conformational change upon
DHPA binding rather than a major modification of the over-
all protein architecture.
Dvl2 DEP domain interaction with PA using
molecular-dynamics simulations

In all simulations of the DEP domain in the presence of
water-soluble DHPA, the lipid molecules are bound to the
DEP domain within the first 10 ns of simulation time, after
which their positions remained very stable. The final config-
urations of each of the three simulations are shown in Fig. 4
and details of such interactions are shown in Fig. S5,



FIGURE 4 Interactions between Dvl2 DEP domain and DHPA for (A) simulation 1, (B) simulation 2, and (C) simulation 3. Residues that are responsible

for binding DHPA lipids (labeled, displayed as sticks, and colored by element: C, gray; O, red; P, gold; H, white). The DEP domain is shown as a cartoon

structure (and colored as a rainbow gradient from blue, N-terminus to red, C-terminus). (Blue, green, and yellow) Helices H1, H2, and H3 in the DEP domain,

respectively. To see this figure in color, go online.
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Fig. S6, Fig. S7, Table S1, and Table S2 in the Supporting
Material. In two of the simulations, DHPA molecules bound
to Asn493 via hydrogen bonds, an interaction that was
further stabilized in one simulation by interactions with
Lys494; these residues are located in a flexible loop region
that also was perturbed from NMR analysis (Fig. 2).
DHPA was also coordinated by Lys446 in two simulations.
In all three simulations, several DHPA molecules bound to
the basic helix region of the DEP domain, specifically
residues Arg472, Arg476, and Lys477. Lys484, a residue just
beyond the C-terminus of the basic helix, also coordinated
one DHPA molecule in one simulation. The results of the
three independent simulations suggest that DHPAmolecules
primarily bind to arginine and lysine residues in the basic
helix (residues 472–479) and in the flexible loop region
that extends from the C-terminus of this helix.

Binding events between the DEP domain and the POPA
membrane occurred in all three simulations within 1 ns of
simulation time (Fig. 5; see details of such interactions in
Fig. S8, Table S1, and Table S3) and involved many of the
same residues that were observed in the DEP-DHPA simu-
lations (Fig. 4). In all simulations, initial contacts made
between the DEP domain and the POPAmembrane involved
Lys494, which served to draw the protein downward to the
membrane surface. Asn493 was also involved in the initial
binding event via hydrogen bonding with the headgroups
of the POPA lipids, but interactions involving Asn493 were
only transient over time after the initial interactions. Bind-
ing of the DEP domain to POPA was further augmented
by interactions involving Arg473 and Lys477, residues in
the basic helix 3 region of the domain. Transient interactions
involving Arg472 and Arg476 were also observed in at least
one of the three simulations. Interactions between POPA
and DEP residues Arg473 and Lys477 were very strong,
with each residue maintaining an average minimum dis-
tance of 0.2 nm or less with any POPA lipid over the course
of the simulations. This distance was a result of very strong
electrostatic and hydrogen-bonding interactions.
The DEP domain formed 17 5 2 hydrogen bonds with
POPA lipids, with 9 5 2 of these involving residues in
the basic helix region. Given that such a short sequence
accounts for the majority of the hydrogen bonds between
the DEP domain and POPA, these results indicate that the
positively charged residues in the basic helix drive the
association of the DEP domain with negatively charged
POPA lipids. Once bound to the POPA surface, the DEP
domain was able to diffuse in the x-y plane at an average
rate of 3 5 3 � 10�7 cm2 s�1, slightly faster than the lipids
themselves, which diffused at an average rate of 2 5 2 �
10�7 cm2 s�1. These findings indicate that the DEP domain
remained tightly bound to the POPA membrane by virtue of
electrostatic and hydrogen-bonding interactions, but these
interactions could be exchanged between lipid molecules,
allowing the DEP domain to move across the lipid surface.
Identification of critical residues in Dvl2 DEP
engaged in PA binding

To distinguish between key Dvl2 DEP domain PA-inter-
acting residues and conformational changes in the protein
induced by the phospholipid, we carried out mutagenesis
on residues that exhibited DHPA-mediated NMR chemical
shift perturbations as well as on those residues that showed
interactions with the lipid from molecular-dynamics simula-
tions. We used two different lipid-binding assays. Mutations
in residues His464, His465, and Phe469 did not significantly
affect binding (Fig. 6 A), suggesting that local conforma-
tional changes, rather than direct interaction with the lipid,
occur in and around the second helix of the protein. Muta-
tions on the DEP domain residues His490 and Lys494, which
induced NMR chemical shift perturbations (Fig. 2) and
interacted with DHPA in our simulation studies (Fig. 4),
severely reduced PA binding (Fig. 6 A). We were unable
to evaluate additional putative PA-interacting Dvl2 DEP
domain residues, as suggested from NMR titration experi-
ments, because alanine mutation of His420 and Lys462 and
Biophysical Journal 106(5) 1101–1111



FIGURE 5 Snapshots of DEP-POPA interactions. (A) The starting configuration for the simulations. (B–D) The final snapshot from simulations 1–3.

(Insets) Residues responsible for binding (sticks, labeled). The DEP domain is shown as a cartoon structure (and colored as a rainbow gradient from

blue, N-terminus to red, C-terminus). (Blue, green, and yellow) Helices H1, H2, and H3 in the DEP domain, respectively. POPA lipids are drawn as lines

and color by element (gray, C; red, O; gold, P; white, H). (Translucent gold spheres) Positions of phosphorus atoms. To see this figure in color, go online.
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serine mutation of Cys501 produced misfolded or degraded
products, as determined by CD spectroscopy and sodium
dodecyl sulfate-polyacrylamide gel electrophoresis analyses
(data not shown).

Studies on the Dvl1 DEP domain have shown that gluta-
mic acid mutations of residues Lys408, Lys458, Lys465,
Lys472, and Lys482, which are equivalent to Dvl2 His420,
Pro470, Lys477, Lys484, and Lys494, respectively, abolish PA
Biophysical Journal 106(5) 1101–1111
binding (20). Only resonances from the backbone amide
groups of His420 and Lys494 (prolines are not visualized in
HSQC spectra) were significantly perturbed by DHPA in
Dvl2 DEP (Fig. 2). We also observed very minor perturba-
tions of resonances mapping in helix 3, but they were not
significant when compared with perturbations observed in
helix 2 and b-strand 4 (Fig. 2 B). An alanine mutation of
Lys477 (helix 3) reduced PA binding (Fig. 6), which was



FIGURE 6 Identification of PA-binding residues of the Dvl2 DEP

domain. (A) Lipid-protein overlay assay of GST-Dvl2 DEP and mutants

as well as GST, as a negative control, were evaluated for dipalmitoyl PA

(DPPA) binding. (B) Liposome binding assay for the Dvl2 DEP domain

and mutants in the absence and presence of dioleoyl PA (DOPA). The figure

shows representative experiments that were repeated three times with

similar results.
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consistent with our simulation studies (Fig. 4), indicating
that the side chain, but not the backbone of the amino
acid, may play an important role in the association.
Moreover, alanine mutagenesis on Arg476 (which is also
located in helix 3) abrogated lipid binding, supporting
our simulation studies. Far-UV CD spectra of the most
critical PA-binding mutants, such as K477A, and K494A,
exhibited similar traces compared with the wild-type pro-
tein, indicating that mutations did not significantly perturb
the global fold of the protein in these regions (see
Fig. S9). As summarized in Table S4, our results identified
the role of the third helix and a loop of the Dvl2 DEP
domain, located between the third and fourth b-strand
elements, in PA recognition.
Dvl2 DEP domain binding to PA is pH-dependent

Recent work by Simons et al. (20) proposes that Dvl recruit-
ment to the membrane depends on pH-sensing by PA to
regulate cell polarity in Drosophila. To biochemically
determine the effect of the physiological pH range on the
Dvl2 DEP domain binding of PA, we evaluated the asso-
ciation at pH values from 6.5 to 8.0. We found that the
Dvl2 DEP dramatically decreased binding to PA at pH
values below 8.0 (Fig. 7 A), whereas the Vam7p PX domain
binding to PtdIns(3)P (phosphatidylinositol 3-phosphate)
was not affected, consistent with previous observations
(37). To quantify the pH effect using a membrane mimic
that closely resembles a lipid bilayer, a liposome-binding
assay was performed in a range of physiologically relevant
pH values. The DEP domain was incubated with large uni-
lamellar vesicles, without and with DOPA, at pH values of
6.25, 6.5, 6.8, 7.1, and 7.5 and unbound (supernatant) and
liposome-bound Dvl2 DEP domain (pellet) fractions were
obtained by centrifugation.

By increasing the pH from 6.25 to 7.5, the Dvl2 DEP
domain increased its interaction with DOPA-containing
liposomes by >50% (Fig. 7 B). This is in agreement with
the observed defective Drosophila Dvl recruitment to the
plasma membrane when the intracellular pH was dropped
to pH 7.1 (20). A near-UV CD spectrum of Dvl2 DEP
domain exhibited differences in their traces at pH values
of 6.25 and 7.5 (see Fig. S10), suggesting that there are
pH-dependent conformational changes around aromatic
groups of the Dvl2 DEP domain. To better visualize this
effect, we analyzed pH-dependent changes in the protein
by collecting HSQC spectra at pH values of 5.5 and 7.5.
Interestingly, and in agreement with the electrostatic/
hydrogen-bond switch model (38), we observed that
increasing the pH from 5.5 to 7.5 induced chemical shift
perturbations in the Dvl2 DEP domain spectrum
(Fig. 7 C) which, in most cases, mirrored the perturbations
observed by the addition of DHPA (Fig. 2 A).
DISCUSSION

In this report, we precisely characterize the phospholipid
binding properties of the Dvl2 DEP domain. A significant
impact of the biophysical approach reported here is that it
provides direct evidence for the DEP domain residues
engaged in PA binding and it does so in a pH-dependent
manner. As depicted in Fig. 8, the positive electrostatic po-
tential of the Dvl2 DEP domain is distributed all over its
surface at pH 5.5, whereas the positive charge is clearly
localized on the PA-interacting regions, the helix 3 and
a downstream loop, surrounded by negative charges at
pH 7.5. This observation suggests that the DEP domain
becomes more specific for its lipid ligand and that lipid
binding is favored by electrostatic interactions with both
helix 3 and its contiguous loop at higher pH values. The
Biophysical Journal 106(5) 1101–1111



FIGURE 7 Binding of the Dvl2 DEP domain is pH-dependent. (A) Lipid-

protein overlay assay of DPPA binding of Dvl2 DEP domain (top) and

PtdIns(3)P binding of Vam7p PX domain (bottom) at the indicated

pH values. (B) Representative gels of liposome pellets showing binding

of Dvl2 DEP to DOPA-containing liposomes (top) and DOPA-free lipo-

somes (bottom) at the indicated pH values. (C) 15N-HSQC spectra of the

Dvl2 DEP domain at pH 5.5 (red) and 7.5 (black). To see this figure in color,

go online.

FIGURE 8 (A and B) Electrostatic potential surfaces for the DEP domain

at pH 5.5 (top) and 7.5 (bottom). The corresponding electrostatic potential

surfaces are colored as gradients (red, negative; blue, positive). (Boxed)

Positive charge generated on the PA-interacting regions of the DEP domain

at pH 7.5. To see this figure in color, go online.
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three-dimensional structure of Dvl1 DEP domain has been
solved by NMR spectroscopy (17). The structure reveals
the presence of a three-helix bundle, a b-hairpin arm, and
two short b-strand elements at the C-terminus of the
domain. An almost identical structure has been determined
for the Dvl2 DEP domain as a chimera in complex with
the m2 subunit of the AP-2 clathrin adaptor (39).

The major feature of the DEP domain structure is the
presence of a hydrophobic core formed by the three
a-helices, which maintain a stable tertiary structure. Based
on the structure, a patch of basic residues in helix 3 of
the Dvl1 DEP domain surface has been suggested to
interact with acidic phospholipids on the plasma mem-
brane (20). Basic residues also drive Epac1 DEP domains
and Sst2 DEP interactions with phosphatidylserine, phos-
phatidylinositol 4,5-bisphosphate, and phosphatidylinositol
3,4,5-trisphosphate (40,41). In addition to the loop residues
His490 and Lys494, we observed NMR chemical shift per-
turbations of the Dvl2 DEP domain in backbone residues
located at the helix 2 and b-strand 4 elements. Due to
strong hydrophobic contacts of helix 2 with the functional
helix 3, as well as the capping function of b-strand 4 on
the hydrophobic core of the DEP domain (17), we there-
fore propose that lipid contact to the side chains of
residues of helix 3 triggers both local pH and conforma-
tional changes in helix 2 and b-strand 4, which are
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committed to maintaining the rigid hydrophobic core of
the protein.

The DEP domain is required for Dvl recruitment to the
plasma membrane during PCP- and b-catenin-mediated
signaling (16,20). In addition, the Dvl DEP domain and a
C-terminal region of the protein are responsible for the
interaction with the Fz receptor to activate b-catenin-medi-
ated signaling (16). Three motifs of Fz, two located in the
third intracellular loop and one at the C-terminus of the
protein, are required for binding to the Dvl central and
C-terminal regions and trigger Wnt-induced b-catenin stabi-
lization (14,16). Specifically, the Dvl1 PDZ (14) and DEP
(16) domains preferentially bind to the Fz C-terminal region
that contains the KTxxxW motif with KD values of 10 and
22–30 mM, respectively, and that the Dvl1 residues Lys438,
Asp449, and Asp452 (equivalent to Dvl2 Lys446, Asp457,
and Asp460, respectively) are required for this association
(16). Interestingly, NMR resonances of these key Fz-inter-
acting residues in Dvl2 are not perturbed by DHPA
(Fig. 2), which makes them available for simultaneous
binding with Fz and phospholipids (16). Likewise, structural
analysis of the Dvl2 DEP-m2 subunit of the AP-2 clathrin
adaptor reveals that PA-independent DEP domain residues
Asp441, Lys446, Asn451, and Arg489 are compromised in m2
subunit binding (39).

PA is a relatively abundant phospholipid (~1% of total
cellular lipid (42)) that exhibits a cone-shaped structure, a
conformation that prevents tight packing of the small head-
group of the phospholipid with the headgroups of other
lipids found at the plasma membrane (43,44). PA-binding
proteins lack the presence of a conserved PA-binding site,
but instead interact with the phospholipid through nonspe-
cific electrostatic interactions between patches of positively
charged amino acids and the negatively charged headgroup
of PA, whereas hydrophobic amino acids may contribute to
membrane insertion (45). Indeed, basic residues such as
lysine and arginine are hydrogen-bond donors because of
the presence of primary amines in their side chains. Conse-
quently, Kooijman et al. (38) proposed a mechanism by
which PA is recognized by PA-binding proteins known as
the electrostatic/hydrogen-bond switch mechanism. In this
model, proteins initially recognize the single protonated
form of PA, and upon recognition, the basic amino acids
of the protein can form a hydrogen bond with the PA phos-
phomonoester headgroup, a reaction that triggers dissocia-
tion of a proton from PA leaving the phospholipid with a
2� charge. A more negative form of PA facilitates electro-
static interactions with the protein, thus, making the pro-
tein-lipid complex more stable.

Our results demonstrate that the Dvl2 DEP domain third
helix and a loop downstream of helix 3 are involved in PA
binding. These regions are basic in nature, supporting the
idea that the interaction of the protein with the lipid is
mainly electrostatic. Biophysical data showed that two basic
residues located in the loop, His490 and Lys494, are relevant
for the interaction. We were unable to observe perturbations
in the HN backbone of the residues comprising helix 3, but
both mutagenesis and molecular-dynamics simulations
studies demonstrated the role of this region in PA binding,
emphasizing the role of the side chains of the lipid-
interacting residues. Binding locations of DHPA to the
DEP domain were similar among all the simulations, and
involved many of the same residues seen in the DEP-
POPA simulations. The residues principally responsible
for binding DHPA were polar (Lys446, Arg472, Arg476,
Lys477, Lys484, and Asn493). This surface is capable of
binding to not only the planar surface of the POPA mem-
brane, but also soluble DHPA clustered over the positively
charged protein surface.

In each of the three simulations of the Dvl2 DEP domain
in the presence of POPA-containing lipid bilayers, initial
contacts between the protein and the lipids were made
through residues in the loop region comprising residues
491–497, most frequently Lys494. The binding event was
further stabilized through the involvement of lysine and
arginine residues in the basic helix 3 extending from resi-
dues 472–479 of the protein. We could not visualize signif-
icant NMR perturbations by the addition of DHPA in
backbone amide groups of helix 3 (Fig. 2). We suggest
that changes may occur on their side chains, which cannot
be observed in the frequency range tested in our NMR
experiments. We demonstrated that single mutations of
basic residues drastically reduced PA binding. This observa-
tion is in agreement with PA binding of mTOR and Epac1,
in which their residues Arg2109 and Arg82, respectively, are
strictly required for lipid recognition (40,46,47). Interest-
ingly, the mTOR Arg2109 side chain, but not its backbone
amide, is perturbed by DHPA (47), a behavior that is likely
observed for Lys477 in the Dvl2 DEP domain.

We biochemically demonstrated that PA binding of the
Dvl2 DEP domain is pH-dependent, consistent with the
proposed mechanism of Dvl membrane binding (20), and
generally accepted for other PA recognition modules (45).
Thus, differentially protonated states of the lipid will deter-
mine the interaction with surface-basic residues of the
protein through electrostatic interactions. Membrane bind-
ing of a protein to PA, through its basic residues, introduces
additional positive charges at the membrane. This asso-
ciation will decrease the proton content due to charge repul-
sion and, thus, promotes an increment of the local pH at the
membrane. The second pKa value for PA is between 6.9 and
7.9 (48), and, consequently at pH values higher than its
second pKa value, the majority of the lipid will be deproto-
nated and more prone to protein binding. Experimentally,
we observed this phenomenon; increasing the pH value in
the Dvl2 DEP domain NMR sample led to specific chemical
shift changes that were also observed after the addition of
DHPA.

In addition to PA, Wnt signaling-related proteins
including Prickle, Rac1, and the muscle kinase receptor
Biophysical Journal 106(5) 1101–1111



1110 Capelluto et al.
have been shown to interact with the Dvl DEP domain by
pull-down or immunoprecipitation assays (6,49,50). How-
ever, there is a lack of information about the mechanism
of recognition of the complexes, their kinetic properties,
and whether PA plays a role in these associations. Thus,
the availability of the resonance assignments of the Dvl2
DEP domain and details of PA binding will provide the tools
to monitor these associations at atomic resolution, map their
binding sites, and understand how Dvl controls the equilib-
rium and divergence of multiple Wnt-dependent signaling
pathways by its DEP domain.
CONCLUSIONS

We report details of the structural and functional basis of PA
recognition by the Dvl2 DEP domain. The work shown here
reveals distinctive features that have escaped previous atten-
tion, including that, in addition to helix 3, a loop between the
b3 and b4 elements plays a role in PA recognition. Local
conformational changes accompany binding and likely
involve helix 2 and b-strand 4, both of which are tightly asso-
ciated with the hydrophobic core of the DEP domain, which
is important to maintain tertiary structure stability (17).
More significantly, we demonstrated that mutations on sin-
gle conserved basic residues in the DEP domain affect lipid
binding, a property that has been found in other PA binding
proteins (40,46,47). Given the modest affinity of the DEP
domain to PA, additional molecular interactions should be
present (e.g., Fz binding, ligation to other acidic phospho-
lipids) for the formation of a stable Dvl membrane-binding
complex. Furthermore, our identification of pH-dependent
binding of the Dvl2 DEP domain not only supports the elec-
trostatic/hydrogen-bond switch model (38), but also con-
firms recent findings that indicate that the association
should be tightly modulated by changes in the intracellular
pH, by the action of proton pumps (20) and, perhaps, by fluc-
tuations in PA levels at the plasma membrane.
SUPPORTING MATERIAL
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SUPPORTING MATERIAL 
 
Cloning, expression, and purification of the Dvl2 DEP domain  
The mouse Dvl2 cDNA construct was a generous gift from Dr. Xi He (Harvard Medical School). 
The Dvl2 DEP domain cDNA (corresponding to residues 410-512) was cloned into a pGEX6P1 
vector (GE Healthcare) and overexpressed in E.coli, Rosetta strain (Novagen). Site-directed 
mutagenesis of Dvl2 DEP was performed using the Quick Change method (Stratagene). 
Unlabeled DEP domain was produced in Luria-Bertani media, whereas uniformly 15N 
and 13C/15N labeled DEP proteins were produced in M9 minimal media supplemented 
with 15NH4Cl and 13C6-glucose (Cambridge Isotope Laboratories). Cells were grown at 37°C 
until the culture reached an optical density of ~0.8 and protein expression was induced with 1 
mM isopropyl-β-thiogalactopyranoside for 4 h at 25°C. Cells were pelleted and lysed by 
sonication in a solution containing 50 mM Tris-HCl (pH 7.3), 500 mM NaCl, 5 mM 
benzamidine, 0.1 mg/ml lysozyme, 5 mM dithiothreitol (DTT), and 0.5% Triton X-100. Crude 
extracts were centrifuged and the supernatant containing the GST-fusion protein was 
immobilized and purified on Glutathione Sepharose 4B beads (GE Healthcare) following 
manufacturer’s instructions. The Dvl2 DEP domain was eluted by cleavage with Prescission 
protease (GE Healthcare) and further purified by size-exclusion chromatography using a 
Superdex-75 column (GE Healthcare). Fractions containing the DEP domain were pooled, 
concentrated, and its purity verified by SDS-PAGE analysis. 
 
Tryptophan fluorescence spectroscopy 
Intrinsic tryptophan fluorescence spectroscopy measurements were carried out using a Jasco J-
815 spectropolarimeter at room temperature in a 1-cm path length cuvette. Samples contained 
Dvl2 DEP (1 µM) in a final volume of 2 ml. Increasing amounts of DHPA were added in ratios 
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ranging from 1:1 to 1:128 (Protein:DHPA). Samples were equilibrated for 5 min after mixing. 
The excitation wavelength was 295 nm, and the fluorescence emission spectra (of three 
accumulations) were recorded from 310 to 410 nm for each protein sample.  
 
DelPhi calculations 
DelPhi (1) electrostatic surface potential calculations were carried out using the DelPhi controller 
interface within the University of California San Francisco Chimera program (2). Atomic radii 
and charges were taken from the AMBER98 force field (3, 4) as implemented within DelPhi. 
The external dielectric was set to 80 and the internal dielectric was set to 2 (default settings in the 
program). Solution ionic strength was set to 100 mM to match the simulation conditions. 
 
Protein-lipid overlay assay 
Lipid strips were prepared by spotting 1 µl of the indicated amount of dipalmitoyl phosphatidic 
acid (DPPA) dissolved in chloroform:methanol:water (65:35:8) onto Hybond-C extra 
membranes (GE Healthcare, Piscataway Township, NJ). Lipid strips were incubated with 0.1 
µg/ml of GST-Dvl2 DEP domain or its mutants in 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 
0.1% Tween-20, and 3% fatty acid-free BSA overnight at 4°C. Following four washes with the 
same buffer, bound proteins were probed with rabbit anti-GST antibody (Santa Cruz Biotech, 
Dallas, TX) and donkey anti- rabbit-horse radish peroxidase (GE Healthcare, Piscataway 
Township, NJ). Protein binding was detected using Supersignal West Pico chemiluminescent 
reagent (Pierce, Rockford, IL). In the case of the pH titrations, buffer was the same as above at 
the corresponding pH value. 
 
Liposome-binding assay 
Dioleoyl phosphatidylcholine (DOPC) stock was dissolved in chloroform:methanol (1:1), 
whereas dioleoyl phosphatidylethanolamine (DOPE) and dioleoyl PA (DOPA) (Avanti Polar 
Lipids, Alabaster, AL) were dissolved in chloroform:methanol:water at a ratio of 65:35:8. Lipids 
were mixed at ratios of 50:50 (DOPC:DOPA) and 50:50 (DOPC:DOPE) and dried under a 
nitrogen stream and desiccated overnight. Lipid films were hydrated in 20 mM Tris-HCl (pH 
7.5), 100 mM NaCl, and 80 mM sucrose at room temperature for 1 h. Liposomes were sonicated, 
pelleted, and suspended in 20 mM sodium citrate (pH 6.25-7.5) and 100 mM NaCl. Ten µg of 
protein was incubated with ~200 µg of total lipid for 30 min at room temperature. Liposome-
bound and free-protein fractions were separated by centrifugation and analyzed by SDS-PAGE.  
 
Circular dichroism spectroscopy 
Far- and near-UV CD spectra were recorded on a Jasco J-815 spectropolarimeter. The 
experiments were carried out in a 1 mm path length quartz cell at room temperature. For 
acquisition of far-UV CD spectra, Dvl2 DEP domain and mutants (3-10 µM) in 5 mM sodium 
citrate (pH 7.5) and 100 mM KF were loaded in the absence and presence of DHPA. Spectra 
were obtained from five accumulated scans from 200 to 260 nm using a bandwidth of 1 nm and a 
response of 4 s at a scan speed of 20 nm/min. Near-UV CD spectra were collected using a 1-mm 
path length at 20 nm/min between 350 and 250 nm with a response time of 1 s and a data pitch of 
0.5 nm. Due to the weak molar absorptivity of the aromatic amino acids, 30-60 µM of protein 
was employed for the near-UV CD experiments. Buffer backgrounds were used to subtract the 
protein spectra.  
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Table S1. Simulation system specifications for Dvl2 DEP with DHPA and POPA. 

System Contents Simulation 
time (ns) 

Box vectors 
 (nm)* 

Dvl2 DEP – lipid distances 
(nm)* 

Dvl2 DEP 
– DHPA 

1 Dvl2 DEP  
4 DHPA 

20 × 3 a = (6.08974, 0, 0) Min 0.72, 1.15, 0.54, 0.50 
 b = (0, 6.08974, 0) COM 2.39, 3.30, 2.18, 2.52 
 c = (3.04487, 3.04487, 

2.15304) 
 

Dvl2 DEP 
– POPA 

1 Dvl2 DEP 
128 POPA 

20 × 3 x = 5.82055 Min 0.74 
 y = 5.62215 COM 5.027 

  z = 12.50000  
* The Dvl2 DEP-DHPA unit cell was a rhombic dodecahedron, thus a, b, and c vectors are 
shown. The Dvl2 DEP-POPA systems were simulated as a rectangular unit cell, for which the x, 
y, and z box vectors are shown. Minimum (Min) and center-of-mass (COM) distances between 
Dvl2 DEP and lipids in the starting configurations are given. 
 
 
 
Table S2. Dvl2 DEP – DHPA interactions over the last 10 ns of each trajectory. 

Replicate Hydrogen bonds (count) Heavy atom contacts (count) 
1 11 ± 1 1,082 ± 66 
2 9 ± 2 1,125 ± 106 
3 14 ± 2 1,408 ± 89 

Average 11 ± 3 1,205 ± 177 
 
 
 
Table S3. Dvl2 DEP – POPA interactions over the last 10 ns of each trajectory. 

Replicate Hydrogen bonds 
(count) 

Heavy atom 
contacts (count) 

H3 heavy atom 
contacts (count) 

H3 – POPA 
distance (nm)* 

1 17 ± 2 1,073 ± 112 346 ± 48 0.59 ± 0.09 
2 17 ± 2 779 ± 40 444 ± 22 0.54 ± 0.04 
3 23 ± 3 1,261 ± 202 448 ± 106 0.46 ± 0.09 

Average 19 ± 3 1,038 ± 243 413 ± 58 0.53 ± 0.07 
* Defined as the center-of-mass distance along the z-axis between the residues of helix H3 and 
the phosphorus atoms of the leaflet of the membrane with which the Dvl2 DEP domain interacts. 
The positive values suggest that the protein did not penetrate the membrane beyond the interface; 
instead, it was bound tightly to the extracellular face of the membrane. 
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Table S4. Summary of the Dvl2 DEP domain residues involved in PA binding with the methods 
employed in this article. 
Dvl2 DEP-
interacting residues 

NMR a Site-directed 
mutagenesis 

MDS  
(DHPA) 

MDS 
(POPA) 

Lys446 - ND + - 
Arg472 - ND + + 
Arg473 - ND - + b 
Arg476 - + + + b 
Lys477 - + + + 
His490 + + - - 
Ans493 - ND + + 
Lys494 + + + + 
a NMR chemical shift perturbations are associated with changes in the protein backbone only. 
Perturbations in the amino acid side chains cannot be detected with the experiments employed in 
this report. 
b Interactions that involve these residues were detected in one out of three simulations. 
ND: not determined 
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Figure S1. Stability of the Dvl2 DEP domain structure over time, as monitored by backbone 
root-mean-square deviation (RMSD, left panel) and root-mean-square fluctuation (RMSF, right 
panel). The overall structure deviates 0.3 – 0.4 nm from the original starting structure from 
homology modeling, and the largest deviations in the structure can be attributed to loop motions, 
as shown by RMSF. Simulations were run for 50 ns in the absence of any lipid molecules, longer 
than the 20 ns presented in the main text, to demonstrate inherent stability in the Dvl2 DEP 
homology model. The RMSF shown was measured over the final 25 ns of these trajectories to 
remove the influence of any nonequilibrated frames in the first half of the trajectories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Representative strips from the HNCACB spectrum of Dvl2 DEP domain (1 mM) 
showing sequential connectivities for Cα (solid line) and Cβ (dotted line) resonances of the 
region comprising residues Gly436 to Met443. 
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Figure S3. Sequence alignment of DEP domains of the following proteins: mouse Dvl2 
(Genbank entry NP_031914), mouse Dvl1 (NP_034221), mouse Dvl3 (NP_031915), Drosophila 
melanogaster Dsh (AAA20216), Xenopus laevis Dsh (NP_001084096), human Epac1 
(AAD12740), Saccharomyces cerevisiae Sst2-DEP-A (AAB67534), human RGS6 (3309252), 
and human Pleckstrin (4505879). The alignment was generated using ClustalW. The secondary 
structural elements determined for the mouse Dvl2 DEP domain are shown on top of the 
sequence alignment. Critical Dvl2 DEP PA-binding residues as well as residues that likely 
participate in local conformational changes are boxed in green and orange, respectively. Trp444 
and Trp461, which were used to monitor local structural changes in the protein upon DHPA 
binding, are boxed in purple.  
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Figure S4. Far- (A) and near-UV (B) CD spectra of the Dvl2 DEP domain in the absence (black) 
and presence (red) of 16-fold DHPA. Data are represented in units of molar ellipticity per 
residue.  
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Figure S5. Distance matrices for Dvl2 DEP – DHPA interactions over the last 10 ns of each of 
the three trajectories. The y-axis represents each of the four DHPA molecules, while the x-axis 
represents the residues in the Dvl2 DEP domain (first 94 residues) and DHPA (residues 94 – 98).  
For reference, the secondary structure diagram of the DEP domain is shown above to indicate the 
correspondence with the full-length protein structure. 
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Figure S6. Radial distribution functions (RDF) for DHPA phosphate oxygen atoms (left panel) 
and water oxygen atoms (right panel) around helix H3 Lys/Arg side chain N atoms (amine and 
guanidinium groups). The DHPA phosphate oxygen atoms show a probability maximum at r = 
0.261 ± 0.005 nm, while water oxygen atoms are most probable at a distance of r = 0.301 ± 0.007 
nm. The RDF indicates that DHPA phosphate oxygen atoms interact more closely with charged 
side chain moieties within H3 than with water. 
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Figure S7. Spatial distribution functions (SDFs) of DHPA molecules around the Dvl2 DEP 
domain over the last 10 ns of each trajectory.  For panels (A), (B), and (C), all DHPA atoms 
were included in the analysis.  For panels (D), (E), and (F), only phosphate atoms were analyzed. 
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Figure S8. The Dvl2 DEP–POPA interaction was quantified by the center-of-mass (COM) 
distance between the helix H3 and the P atoms of the membrane leaflet over time in three 
independent simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S9. Far-UV CD spectra of wild-type Dvl2 DEP as well as K477A and K494A mutants. 
Data are represented in units of molar ellipticity per residue.  
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S10. Near-UV CD spectra of the Dvl2 DEP domain at pH 6.25 (red) and 7.5 (black). Data 
are represented in units of molar ellipticity per residue.  
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