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Imaging Models of Valuation During Social Interaction
in Humans
Kenneth T. Kishida and P. Read Montague

The role of dopamine neurons in value-guided behavior has been described in computationally explicit terms. These developments have
motivated new model-based probes of reward processing in healthy humans, and in recent years these same models have also been used
to design and understand neural responses during simple social exchange. These latter applications have opened up the possibility of
identifying new endophenotypes characteristic of biological substrates underlying psychiatric disease. In this report, we review model-
based approaches to functional magnetic resonance imaging in healthy individuals and the application of these paradigms to psychiatric
disorders. We show early results from the application of model-based human interaction at three disparate levels: 1) interaction with a single
human, 2) interaction within small groups, and 3) interaction with signals generated by large groups. In each case, we show how
reward-prediction circuitry is engaged by abstract elements of each paradigm with blood oxygen level– dependent imaging as a read-out;
and, in the last case (i.e., signals generated by large groups) we report on direct electrochemical dopamine measurements during decision
making in humans. Lastly, we discuss how computational approaches can be used to objectively assess and quantify elements of complex

and hidden social decision-making processes.
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E very aspect of the survival of an organism requires intact
decision-making machinery. Human choices include those
regarding basic needs (e.g., survival, security, and reproduc-

ion); however, human environments also require complex and
bstract decisions unique to our species. Human decision-making is
articularly guided by our ability to learn from experience and
enerate predictions about future events. Reinforcement learning
lgorithms (1) have been used to explain physiological data at the

evel of single neurons during relatively simple Pavlovian learning
asks (2,3). More recently, these models of value-guided learning
ave framed functional magnetic resonance imaging (fMRI) exper-

ments in human decision-making in game theoretic paradigms
4,5). The burgeoning field of neuroeconomics (6 –9) seeks to use
euroscientific tools (neuroimaging, neural recordings, etc.) to fur-

her develop “economic theory” about human decision-making
10). Recent developments suggest that neuroscience and psychi-
tric medicine might actually have much to gain as well from this
erging of disciplines (8,11,12). Game theory provides a mathe-
atical framework to investigate social interaction in humans with

uantitatively controlled behavioral spaces and notions of optimal
lay. Comparing game play (economic games) in individuals diag-
osed by DSM-IV standards with that in healthy control subjects is
roviding insight into the neurobiological responses associated
ith objectively quantifiable game behavior (12–16). These early

teps suggest a newly developing paradigm in psychiatric medi-
ine where computer-assisted objective measurements and analy-
is might augment the art of psychiatric diagnosis and treatment
12). We propose that the introduction of computer-assisted game
lay and objective neuroimaging signatures (yet to be established)
ight lead to the development of a new class of diagnostic vari-
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bles for the diagnosis of psychiatric illness. Such biomarkers might
nclude measurements of expressed behavior, parameters derived
rom models of learning and game play, or illness-specific brain
esponses. For example, King-Casas et al. (14) used a simple two-
erson exchange to show that subjects with Borderline Personality
isorder demonstrated a distinct neural correlate in anterior insula
uring game play that might be used as just such a biomarker. In
eneral, this work is in its very early days and will require large-scale
ata collection and validation in healthy populations; however, the
ossibilities of augmenting traditional views of mental disease re-
ain provocative.

Herein, we will first give a brief description of the theoretical
ramework for a particularly successful reinforcement learning al-
orithm, the temporal difference (TD) learning model, and then
escribe recent developments in applying this framework to valu-
tion problems in decision-making during three levels of social
xchange: 1) interaction between two humans (Figure 1), 2) inter-
ction within a small group of humans (Figure 2), and 3) interaction
ith signals derived from large populations of humans (Figure 3).

ach of these levels of social interaction challenges decision-mak-
ng machinery in interesting and novel ways, each of which might
e used to identify quantifiable endophenotypes in patients with
sychiatric disorders.

einforcement Learning, Dopamine, and a “Common
eural Currency” for “Basic” and “Social” Rewards

In general, reinforcement learning algorithms make assump-
ions that are well-matched to the behavior of biological organisms
1). In these models, abstract agents are assumed to possess goals
nd the ability to represent decision spaces (i.e., options). These
paces might be conceived as a network of states that the agent
raverses according to some policy. Importantly, it is assumed that
he agent maintains representations of values associated with each
tate in the decision space and these values are updated after each
ecision. Learning takes place as the agent makes choices, receives

mmediate rewards, and observes the resulting change in value
ssociated with the various available states. The exploration of the
ecision space and observation (or estimation) of values associated
ith the various states in the space can occur in actuality or through

imulation. Importantly, all aspects of the problem as described
ave representations in mathematical forms. The updating signal in
his framework is the reinforcement signal, which guides learning
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on the basis of observed changes. For a more comprehensive re-
view on the application of these models see (1,17,18).

The “TD learning model” is a particular reinforcement learning

Figure 1. Reputation formation during two-person trust game. (A, B) Two-per
ounds of exchange. The total points earned during each round are tallied up a
oints earned. (C) Blood oxygen level–dependent correlates in the brains of the
ne region, the head of the caudate nucleus (bilateral), with responses greater

Neural correlates of reputation building. Region of interest blood oxygen leve
Responses in trustee brains around “investment” revelation (“reveal”) were sepa
red: future decrease in trust). Top row shows response in early rounds, bottom
response (bar plots on right for time points highlighted with arrows in time ser
where the peak response is predictive of positive investor gestures. This temp
about the future behavior of the investor. Adapted, with permission, from King
algorithm that uses the TD error as its learning signal: m

ww.sobp.org/journal
TD error � reward prediction error � r�St� � �V�St�1� � V�St�

Here, r(S ) is the immediate reward the agent receives when it

ultiround trust game. Pairs of subjects are hyperscanned (36) while playing 10
nd of the 10 rounds of exchange, and subjects are paid according to the total

ees to the reciprocity of the investors. Statistical parametric map showing only
enevolent” gestures relative to “malevolent” gestures (n � 125 gestures). (D)
endent time series response in trustee brains from voxels defined in panel C.
on the basis of the next decision of the trustees (black: future increase in trust;

hows responses in late rounds. A temporal transfer in the peak hemodynamic
left) after revelation of the decision of the investor is observed in late rounds
ift is consistent with the formation of expectations in the brain of the trustee
et al. (24).
son m
t the e

trust
for “b

l–dep
rated
row s
ies on
t

oves into state “S” at time “t”. V(S) reflects the long-term value func-
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tion over states “S” at times “t” and future time points (i.e., “t�1”). The
D error signal is used in a reinforcement learning scenario to evaluate
he action taken by evaluating the obtained state. The evaluation takes
nto account the expected reward, the actual reward received, and the
ew, updated values for all other states (now and into the future) and

he expectations generated. Such a signal can be used to direct future
ecisions, given some policy function; for instance, softmax is a com-
only used algorithm that chooses the transition probabilistically but

s weighted toward the maximization of value (1).
Dopamine (DA) neurons in nonhuman primates have been shown

o generate firing activity predicted by the TD learning algorithm
2,3,19). In these experiments, monkeys performed a simple Pavlovian
onditioning task while microelectrodes recorded spike activity in DA
eurons (3). Recent human fMRI experiments have demonstrated that
imilar “simple” instrumental (20) and passive conditioning (21) para-
igms elicit blood oxygen level–dependent (BOLD) responses in the
orsal (20) and ventral striatum (21) consistent with TD learning model
redictions and dopaminergic anatomical projections (20–23). These

nitial experiments set the groundwork for using fMRI to study human
earning and decision-making with paradigms framed by computa-

Figure 2. Expectation error signals in the ventral striatum to changes in so
subjects are recruited per group experiment. Subjects answer questions and
five subjects in each group are randomly selected to have their brains sc
experiment. (B) Nucleus accumbens parametrically responds to positive ch
correlated with changes in rank identified only the bilateral nucleus accumb
(C) Blood oxygen level dependent (BOLD) responses in nucleus accumbe
questions. Horizontal-axis: time (seconds); vertical-axis: BOLD response exp
rank (vertical grey bar); red traces: BOLD responses (mean � SEM) in the nu
responses (mean � SEM) in the nucleus accumbens associated with rank d
whether they answered the last question correctly or incorrectly, the respon
over the effect of answering trials correctly and the effect it should have on o
blue traces (p � .05, two-sample t test). (D) Summary of prediction error inte
2 table summarizing BOLD responses in panel C after a prediction error interp
error depends on the change in rank of the subject (�R, rows). A positive cha
which is approximately twice as large in peak amplitude when the subject
answered the question correctly (right column). By contrast, a negative ch
incorrectly (left column) but saw a negative dip when preceded by a corre
et al. (34).
ional models of valuation and choice behavior. These models in com- a
ination with game theoretic probes of human decision-making have
ecently been applied to study reward-processing, motivation, learn-
ng, and choice evaluation in social contexts (24–34).

einforcement Learning During Two-Party Social
xchange

King-Casas et al. (14,24,35) used hyperscanning (36) to investi-
ate neurobehavioral responses elicited in two brains engaged in

ive social exchange. Participants played a simple exchange game,
he multi-round trust game (Figure 1A). Participants play 10 rounds
f sequential exchange as an “investor” or a “trustee”; the investor is
iven, for example, $20 at the start of a round and must decide what

raction (“i” in Figure 1A) of those points they will “invest” with their
artner. This value can range from $0 to the full $20. Both partners
now that the amount that the investor shares will be tripled on the
ay to the trustee. Both partners also know that the trustee would

hen have the opportunity to repay (“r” in Figure 1A) the investor
rom the total amount that the trustee received in the tripled invest-

ent (in Figure 1A: “r” � a fraction of the tripled investment, “3i”)

nk in a small group. (A) Depiction of 5-person Ranked Group IQ task. Five
iven feedback in the form of a ranking within the group of five. Two of the
with functional magnetic resonance imaging during this portion of the
in rank: a random-effects general linear model analysis for responses that

r positive changes in rank (random effects, n � 27, p � .0001, uncorrected).
changes in rank after incorrect (left) or correct (right) responses to test
as the percentage change from baseline after the revelation of one’s own

accumbens associated with rank increases (positive �R); blue traces: BOLD
ses (negative �R). Although subjects did not have explicit feedback about
bserved in the nucleus accumbens are consistent with an expectation error
ank. *Significantly different at corresponding time points between red and
tion of BOLD responses in nucleus accumbens after rank revelations. A 2 �

ion. When subjects answer incorrectly or correctly (columns), the prediction
n rank (top row) elicits a positive BOLD response in the nucleus accumbens,

ered the question wrong (left column) compared with when the subject
in rank resulted in no change in BOLD response when subjects answered
nswered question (right column). Adapted, with permission, from Kishida
cial ra
are g

anned
anges
ens fo
ns to
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allow the observation of learning, reputation formation, and asso-
ciated brain responses (24).

The multiround trust game dramatically reduces two-party so-
cial exchange. The only communication between the partners
comes in the form of points sent back and forth, which is commu-
nicated to the participants with simple displays on a computer
screen (for examples: Figure 1B). Despite this, interesting social

Figure 3. Guidance signals in response to market fluctuations revealed in
sub-second measurements of dopamine (DA). (A) Sequential investment t

umans. For each decision in the game, the subject is presented three piece
xample), and 3) the most recent fractional change in portfolio value (bott
-maps of two learning signals computed during the sequential investmen
rror only, TD and fictive overlapping, and TD error only responsive voxels a

26). (B) Sub-second DA release in the caudate during the sequential investm
se in a human brain was used to measure cyclic voltammograms once ev

esonance image showing predicted electrode placement; middle, bottom:
icrosensor shown; left inset: three representative markets (magenta trace

black trace: normalized DA response in human caudate [right hemisphere
� 20 investment decisions), corresponding portfolio value (green tra

measurement (black trace: normalized DA response in human caudate [left h
portfolio or DA, respectively) and time (horizontal bar � 25 sec). Panel adap
ignals such as “benevolent” and “malevolent” investor behavior (

ww.sobp.org/journal
an be operationally defined (24). A contrast of brain responses in
he trustee brain over rounds of “better than expected” (i.e., “benev-
lent”) versus “worse than expected” (i.e., “malevolent”) responses

eveals guidance signals only in the head of the caudate nucleus
bilateral) (Figure 1C). In the trustee brain, large responses in this
egion were observed in early rounds after the revelation of inves-
or gestures that resulted in future increases in trust by the trustee

dorsal striatum with functional magnetic resonance imaging and in situ
nd blood oxygen level– dependent (BOLD) imaging of learning signals in
formation: 1) market trace (red), 2) portfolio value (bottom left, “139” in this
ht, “�23.92%” in this example). Inset, bottom right: Statistical parametric

: fictive error signal (left) and the TD regressor (right). Call-out shows fictive
e levels of significance. Panel adapted, with permission, from Lohrenz et al.
ask. Fast-scan cyclic voltammetry on a carbon fiber microsensor adapted for
0 msec in the human striatum. Insets: Middle, top: T1 weighted magnetic
ensional rendering of the head of a patient with trajectory of carbon-fiber
alized market value, N � 20 investment decisions) and DA measurement

ht inset: representative market (magenta trace: normalized market value,
ormalized portfolio value given N � 20 investment decisions), and DA
here]). Scale bars for all insets: normalized units (vertical bar � 1 SD: market,
ith permission, from Kishida et al. (33).
the
ask a

s of in
om rig
t task
t thre
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3-dim
: norm
]); rig
ce: n
emisp
i.e., increased reciprocation) (Figure 1D top row). These responses
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exhibited a temporal transfer in later rounds of the game (Figure 1D
bottom row) that coincided with increased prediction accuracy
about what the investor was going to do next (24), consistent with
reputation building and TD prediction error models. Subsequent
studies explored other dimensions of the value of social informa-
tion, including social comparison (25), social status (29,30,34), reli-
ability of social information (27), and social conformity (32). Each of
these tasks implicates the mesolimbic dopaminergic system in pro-
cessing social signals in a manner analogous to basic reward, sug-
gesting a common neural currency (7). The connection between
the observed BOLD responses in these experiments and the dopa-
minergic system continues to be the mathematically expressed
model for reinforcement learning; however, new experiments
aimed at directly measuring DA release in human brains (see follow-
ing discussion) (Figure 3B) promises to test the hypothesized role of
DA in human decision making directly.

Reinforcement Signals in Small Group Interactions

Relatively simple two-party exchange games are at the forefront
of neuroimaging experiments investigating disorders that alter
typical social exchange (12–16). However social behavior in many
species typically involves small to large groups of individuals. This is
certainly true of humans. BOLD responses in the ventral striatum
consistent with reinforcement learning during small group interac-
tion have recently been demonstrated (Figure 2, adapted from
Kishida et al. [34]). Here, social status within the group was the
valued commodity, and its magnitude was dynamically manipu-
lated by the performance of the subjects during the Ranked Group
IQ task (Figure 2). In this task, five subjects were recruited and
introduced to each other by first name and performed a group IQ
test with feedback in the form of their rank within the group of five
(example screen shown in Figure 2A). Responses in the nucleus
accumbens showed a parametric response in the nucleus accum-
bens to changes in social rank consistent with a reward related
response (Figure 2B) in a random-effects general linear model anal-
ysis (n � 27 subjects, p � .0001, uncorrected). Further analysis of
these responses revealed that the magnitude of the BOLD re-
sponses was correlated with a TD error over expected changes in
rank, given the correctness of the last question (Figure 2C). The
hypothesized error signal is derived by assuming the participants
generate an expectation about their change in rank (expected
change in rank: E[�R]), which is subtracted from their actual experi-
enced change in rank (�R):

TD error signal � �R � E��R�
The model can be formulated by considering that participants
form expectations about their change in rank, given their ability
to answer questions correctly or incorrectly. The response in the
nucleus accumbens (Figure 2C) shows four categorical re-
sponses that match predictions of the TD model and are summa-
rized in Figure 2D.

The use of “model based” approaches in neuroimaging experi-
ments take on at least two general forms. One approach is to iden-
tify patterns of behavioral exchange that are modified during expe-
rience and after feedback and to use a mathematical model to
frame the observed responses. Thus, this more traditional trial-
based comparison of responses can be framed by expectations
from model behavior and used to explain the observed responses
in a coherent hypothesis as exemplified in Figures 1 and 2. An
additional approach starts where the former ends and generates an
experiment to test specific parameters in a model or to test differ-

ent models against expected biological responses (response mag- t
itudes or anatomical differences in the expression of model pa-
ameters). The latter approach derives regressors from the
ombination of measured behavior and the computational mod-
l(s) being tested. These regressors are then used to search for
orrelated neural responses. In the following text we describe work
omparing the role alternative learning signals (TD error and fictive
rror) play in value-guided behavior.

einforcement Learning with “Fictive Errors” Guide
nvestment Behavior

The role of the dopaminergic system in guiding behavior during
imple reward harvesting behavior and more complex social inter-
ctions is bridged in an interesting way by Lohrenz et al. (26) and
ishida et al. (33) (Figure 3). Lohrenz et al. designed a sequential

nvestment task, which uses historical stock market data and pits
ubjects against these fluctuating abstract signals. This task was
esigned to test computational models of learning and dopaminer-
ic function and probes choice behavior in the context of a history
f successful and failed gambles. This task takes advantage of the
atural statistical structure that emerges during market-level ex-
hanges.

In the sequential investment task (Figure 3), subjects are given a
tarting portfolio of $100 and are allowed to invest a fraction of their
ortfolio in the market (increments of 10%). Once the subject submits

heir decision, the market updates and reveals a new section of the
arket. The first imaging results from the sequential investment task

emonstrated that the striatum responds to at least two mathemati-
ally defined guidance signals. The TD learning model and a fictive
rror model were shown to correlate with BOLD responses in overlap-
ing and non-overlapping tissue in the caudate (Figure 3A, inset,
dapted from Lohrenz et al. [26]). The fictive error derives from a varia-
ion of TD reinforcement learning algorithms, called “Q-learning.” Q-
earning assesses more than just the relationship between states and
alue; rather, “state-action pairs” and value are assessed. Here a policy
unction determines what action, at, to take given the current state, st,
at time, “t”) and the expected value associated with those state-action
airs:

policy (St) � max
a

Q̂�st, at�

The policy taken is determined by finding the maximum of the

stimated Q-value function, Q̂, for the range of state-action pairs
st, at�. Q-learning takes advantage of the experiential learning in a
imilar manner as TD learning (by including such a term) but also
akes into account other learning signals such as off-policy counter-
actual signals (i.e., the fictive error signal). Here the “fictive error
ignal” resembles the subjective experience of “what could have
een” but has a formal definition in the machine learning literature.

n the context of Q-learning, the fictive error term speeds up the
rocess of learning by taking into account the missed reward for all
ctions not taken (i.e., “fictive” actions, at

�
) from a given state, st:

fictive critic � �
fictive

actions, at
�

�Q̂�st, at
� �

hich adds to the update signal provided by experiential learning:

experience critic � Q̂�st, at�
In the context of the use of the sequential investment task of

ohrenz et al. (Figure 3A), the fictive error calculation accounts for

he market fluctuation (state change: st ¡ st�1) and the size of the

www.sobp.org/journal
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bet of the player (action taken: at) and determines the magnitude of
hat the earnings could have been had the subject maximized

heir bet (fictive action: at
�

). This depiction quantifies the counterfac-
ual signal within this paradigm and can be used to track brain
esponses correlated with the predictions of this model. Here the
emonstration that the striatum calculates an additional guidance
ignal supports the hypothesis that computations about value-
uided choice are reflected in metabolic demands in the striatum
nd are multifaceted. Subsequent work has shown that nicotine
ddicts (i.e., smokers) compute the fictive error signal in the same
egion as the non-addicts, but unlike the non-addicts, their subse-
uent decisions are not driven by fluctuations in this counterfactual
ignal (26,28).

Measuring DA Release in the Human Brain

The relationship between BOLD responses that track TD error
computations and the underlying physiology is hypothesized to
involve fluctuations in the neurotransmitter DA. The early studies
that identified the relationship between the TD error model and DA
neuron activity in the ventral tegmental area and substantia nigra
of nonhuman primates (2,3) were followed by a jump into humans
with fMRI and paradigms framed by the same model that predicted
DA neuron activity (21,37–39). The body of literature investigating
these signals is identifying multiple regions in the brain where DA
neurons are known to send a high density of projections (e.g.,
dorsal and ventral striatum and the orbital frontal cortex). A consis-
tent pattern is emerging for dorsal and ventral striatal responses
observed for active versus passive learning, respectively (reviewed
by Montague et al. [19]). The striatal responses reviewed here are
consistent with this literature, but the link between the BOLD re-
sponse and DA release is currently theoretical and remains an ex-
citing opportunity for investigation.

Recently, a microsensor capable of measuring DA release in
freely behaving rodents (40) was adapted for use in human patients
undergoing deep brain stimulating electrode implantation for the
treatment of Parkinson’s disease (Figure 3B) (33). These “first of their
kind” measurements of sub-second DA release in humans were
carried out in the caudate while the patient performed the sequen-
tial investment task. With the microsensor placed in the right hemi-
sphere (Figure 3B left) DA is observed to track the value of the
market over 100 decisions made by the patient (p � .000001; re-
gression slope � .91; and r2 � .549, N � 100 decisions) (33). In the
eft hemisphere, the DA was observed to track the portfolio of the
nvestor (Figure 3B right). Additionally, work by Zaghloul et al. (41)
as demonstrated a consistent picture between models of DA neu-

on activity in nonhuman primates and measurement of DA neuron
ctivity in humans. They also recorded from human patients under-
oing deep brain stimulating electrode implantation for Parkin-
on’s disease and showed that neural spike activity in the substantia
igra responded to unexpected financial rewards in a gambling

ask.
Deep brain stimulation electrodes are beginning to be used in a

rowing number of neurological disorders. The microsensor devel-
ped by Kishida et al. (33) has the ability to reach deep structures in

the human brain during these surgical procedures, thus opening
the door to a wide range of possibilities in investigating dopaminer-
gic release in human cognition. Likewise the sharp electrodes used
by Zaghloul et al. (41) are capable of recording electric activity deep
in the brain and can be used to validate and discover new relation-
ships between neural spike activity and human strategies. These
technologies paired with economic probes of decision-making and
social interaction promise to provide a new understanding of

mechanisms underlying psychiatric disease. b

ww.sobp.org/journal
lternative Computational Approaches

Reinforcement learning models have proven to be successful in
xplaining neural and behavioral data at multiple levels of descrip-
ion. Here we have focused on the role of the dopaminergic system,
ue to its suspected role in a number of mental disorders; thus

einforcement learning models, with TD learning and its relation-
hip with dopaminergic activity as one particular example from this
enre, has offered an exemplary starting point. However, theoreti-
al developments in many aspects of neurobiology have under-
one an explosive growth in recent years (42), and so efforts to
nderstand mental disease in computational terms will gain from
imilar computational approaches directed at other levels of orga-
ization in the nervous system. Particularly promising develop-
ents include the use of mathematical models depicting other

rocesses required for social exchange. Recent work has led to the
evelopment of models that describe hypothesized computational
rocesses underlying “mentalization” (43). These models are

ramed and tested within the context of economic games, thus
aking full advantage of the quantitative, reduced, and value-
uided behavioral environment these games provide. For example,
ampton et al. (44) identify brain responses that correlate with

eparable computations underlying strategic thinking; they com-
are three models—a reinforcement learning model, a fictitious
lay model, and an influence model—and identify neural correlates

o the various signals these different computations generate. An-
ther model-based approach toward mentalization and processes
nderlying the psychological construct known as “theory of mind”
re included in a collection of articles by Yoshida et al. (16,45,46),
here they develop a computational “game theory of mind” (45),

dentify neural correlates with the underlying computations (46),
nd demonstrate alterations in behavioral parameters in a cohort of
articipants diagnosed with autism spectrum disorder (16) with a

wo-party coordination game. Finally, the use of models to probe
ata generated in neuroeconomic tasks is not the only maneuver
vailable to computational biologists interested in game theoretic
robes of healthy and unhealthy behavior. Koshelev et al. (15) used
ata generated in the multi-round trust game where different pa-

ient populations were placed in the trustee role and asked whether
“model-free” computational approach could identify clusters of
laying style that could differentiate the different populations in-
ut into the analysis. This approach was able to discover natural
lusters of behaviors expressed by the healthy investors playing
ifferent trustee populations using objective and algorithmic pro-
edures with surprising accuracy and very interesting “errors.”

uture Directions

The notion of a “common currency” for valuation in the human
rain across decision spaces that include basic needs (food and
ater), proxies for later reward (points and monetary cues), and
ore abstract social signals (reputation and status) is held together

y a relatively simple thread, mathematical depictions of reinforce-
ent learning theories. Valuation models from the machine learn-

ng literature (1) and initially explored in animal models in simple
earning and choice paradigms (2,3,40) have begun to provide
uantitative insight about signals in human brains during choice
ehavior in social contexts. Framing experimental paradigms in
athematical theory can provide access to parameters and new

oncepts that are not directly available to our conscious psyche.
he fruits of these maneuvers are beginning to express themselves
s new insight into longstanding issues in psychiatric populations.
he ability to track mathematically defined and objectively estima-

le parameters in games might provide a new set of quantitative
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phenotypes and insight into the biology of choice behavior. These
developments in neuroeconomics are already showing promise for
the development of new models of psychiatric disease (12). At least
one major issue that characterizes psychiatric disorders is the ob-
served aberrant social behavior and the inability to adjust these
behaviors after various forms of positive and negative feedback
from the environment. The mathematical models that capture im-
portant learning signals that have been used identify responses in
neural structures consistent with a core valuation network. How-
ever, this network does not exist in isolation, and those extending
this early work into psychiatric populations must keep this in mind.
Hypothetical differences in patient populations might be discov-
ered in the core valuation machinery, but it is also very likely that
information processing at other stages might be affected as well.
For example, neural tissue engaged during the representation of
game states (i.e., perceptual machinery) or neural tissue engaged
during the execution of an action “post”-evaluation might show
alterations. Further developing mathematical models for other ele-
ments of the game process (mental representations and inferences)
will be needed to fully understand and tease apart the decision-
making process and how it can be altered in mental disorders.

Whether these initial steps in computational and neuroeco-
nomic approaches to understand the biology underlying mental
disorders will lead to improvements in diagnosis and treatment
remains to be seen, but the insight gained into the biology of
valuation and decision-making thus far is promising and suggests a
picture that is much simpler than previously thought (e.g., a core
valuation system vs. multiple specialized systems). Identifying the
specific neural processes and behavioral characteristics that char-
acterize and differentiate psychiatric conditions in the economic
game environment will require much more work and a community
of researchers and clinicians dedicated to understanding the un-
derlying biology. Computational approaches are poised to handle
formally explicit hypotheses about the behaviors expressed in
these games and the computations that are likely executed during
the decision making process. These computations might be discov-
ered to match some of our intuitions, but we should be prepared to
be open to the possibility that there might be underlying compu-
tations carried out that are removed from our conscious psycholog-
ical experience. Framing these problems in mathematically explicit
terms provides a language to develop new theories that are not
limited by the restricted space of words we use to express our
conscious experiences. Social behavior is immensely interesting,
which might be driven in part by its sometimes overwhelming
complexity. Neuroeconomic combined with computational ap-
proaches are providing a new window to observe, simplify, and
experiment on important aspects underlying the biology of choice
during social exchange; these developments possesses the poten-
tial to develop a new paradigm of diagnosing and treating psychi-
atric disease.
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