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Abstract Recent evidence in animals has indicated that the
mesencephalic dopamine system is heterogeneous anatomi-
cally, molecularly, and functionally, and it has been suggested
that the dopamine system comprises distinct functional sys-
tems. Identifying and characterizing these systems in humans
will have widespread ramifications for understanding drug
addiction and mental health disorders. Model-based studies
in humans have suggested an analogous computational het-
erogeneity, in which dopaminergic targets in striatum encode
both experience-based learning signals and counterfactual
learning signals that are based on hypothetical information.
We used brainstem-tailored fMRI to identify mesencephalic
sources of experiential and counterfactual learning signals.
Participants completed a decision-making task based on
investing in markets. This sequential investment task generat-
ed experience-based learning signals, in the form of temporal
difference (TD) reward prediction errors, and counterfactual

learning signals, in the form of “fictive errors.” Fictive errors
are reinforcement learning signals based on hypothetical in-
formation about “what could have been.” An additional learn-
ing signal was constructed to be relatable to a motivational
salience signal. Blood oxygenation level dependent responses
in regions of substantia nigra (SN) and ventral tegmental area
(VTA), where dopamine neurons are located, coded for TD
and fictive errors, and additionally were related to the moti-
vational salience signal. These results are highly consistent
with animal electrophysiology and provide direct evidence
that human SN and VTA heterogeneously handle important
reward-harvesting computations.
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Current theories of dopamine function posit a single compu-
tational role for dopamine neurons in communicating errors in
reward prediction to target brain regions (Bayer & Glimcher,
2005; Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan,
& Montague, 1997). Recent empirical work in animals has
shown that dopamine neurons in the ventral tegmental area
(VTA) and substantia nigra pars compacta (SNc) are hetero-
geneous, with anatomical, molecular, and—importantly—
functional differences (Brischoux, Chakraborty, Brierley, &
Ungless, 2009; Joshua, Adler, Rosin, Vaadia, & Bergman,
2008; Lammel et al., 2008; Matsumoto & Hikosaka, 2009;
for a review, see Roeper, 2013).

Functional differences have been examined in both rodents
and nonhuman primates. In rodents, some dopamine neurons
were shown to phasically respond to aversive events
(Brischoux et al., 2009), which dopamine neurons were ex-
plicitly thought not to do (Ungless, Magill, & Bolam, 2004).
In nonhuman primates, as well, dopamine neurons have been
identified that respond phasically to aversive events but also to
cues predicting those aversive events. These dopamine
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neurons were mainly located dorsolaterally within the SNc,
relative to dopamine neurons that fired according to reward
prediction error theory (Matsumoto & Hikosaka, 2009). This
distinction has been interpreted as a functional gradient span-
ning the VTA and SNc, as opposed to anatomically discrete
groups of dopamine neurons with different functional proper-
ties. The dopamine neurons responding to aversive events
have been posited to encode a motivational salience signal,
which can be used for more efficient reward harvesting
(Kakade & Dayan, 2002), instead of just coding for reward
prediction errors (Bromberg-Martin, Matsumoto, &
Hikosaka, 2010; Matsumoto & Hikosaka, 2009).

On the basis of this emerging animal literature illuminating
heterogeneity in the dopamine system, it has been hypothe-
sized that multiple dopamine systems, with different firing
properties and different efferent projections (Lammel et al.,
2008), exist in the brain (Bromberg-Martin et al., 2010).
Identifying and characterizing putative functional subgroups
of the human brainstem dopamine system will have wide-
spread ramifications for understanding addiction and other
brain disorders.

We investigated the complexity of the human mesencephal-
ic dopamine system using brainstem-tailored functional mag-
netic resonance imaging (fMRI; D’Ardenne, McClure,
Nystrom, & Cohen, 2008). Because the BOLD response mea-
sured in fMRI reflects composite neuronal activity, we focused
on functional heterogeneity. We aimed to answer the question
of whether distinct computational learning signals—some (like
reward prediction errors) known to be computed by the dopa-
mine neurons, and other signals hypothesized to be encoded by
dopamine—had discriminable sources within the SN and VTA
that were consistent with a functional gradient seen in animals.

To do this, we examined two classes of computational
learning signals: experience-based signals and counterfactual
signals based on hypothetical outcomes. The experiential learn-
ing signals that we examined were signed and unsigned tem-
poral difference (TD) reward prediction errors. Signed TD
errors are calculated as the ongoing difference between rewards
(in this experiment, money) received and expected. The
unsigned TD error—for simplicity, operationalized by taking
the absolute value of the signed TD error—was used as a proxy
signal that is relatable to a motivational salience signal
(Bromberg-Martin et al., 2010; Matsumoto & Hikosaka,
2009). We sought to determine whether noninvasive measures
of neuronal activity related to signed and unsigned TD errors
would show patterns of activity in humans that were similar to
those reported in the animal literature: namely, that unsigned
TD error sources would primarily be localized dorsolaterally to
signed TD errors.

The second type of computational learning signal that we
studied was a counterfactual learning signal. Although it is
well-established that dopamine neurons compute signed TD
errors (Bayer & Glimcher, 2005; Montague et al., 1996;

Schultz et al., 1997; Tobler, Fiorillo, & Schultz, 2005), the role
of the midbrain dopamine system in computing counterfactual
computational signals is less clear. Work in animals and
humans has implicated the anterior cingulate cortex (Hayden,
Pearson, & Platt, 2009), the prefrontal cortex (Abe & Lee,
2011), and the striatum (Chiu, Lohrenz, & Montague, 2008;
Lohrenz, McCabe, Camerer, & Montague, 2007) in the com-
putation of counterfactual-information learning signals. Be-
cause the dopamine system is known to innervate these brain
regions, and because counterfactual learning signals are easily
integrated into TD reinforcement learning algorithms (Lohrenz
et al., 2007), we hypothesized that the mesencephalic dopa-
mine system was a candidate source for the computation of
counterfactual learning signals.

We focused on a specific counterfactual learning signal,
the so-called “fictive error,” that is based on hypothetical
outcomes that could have happened (Lohrenz et al., 2007;
Montague, King-Casas, & Cohen, 2006). Fictive errors are
the ongoing difference between rewards that could have been
gained and actual rewards. The present study extends previ-
ous work on fictive errors in humans (Chiu et al., 2008;
Lohrenz et al., 2007) to a detailed examination of these
signals in the mesencephalon.1

Method

Participants

The Institutional Review Panel for Baylor College of Medi-
cine (BCM) approved this experiment for human participa-
tion. Informed written consent was obtained from all partici-
pants, who were recruited from within the BCM community,
as well as from the surrounding Houston, Texas, area. Of the
90 participants imaged, 23 were excluded due to excessive
head motion (motion greater than 1.5 mm in any direction).
The remaining 67 participants (35males, 32 females) varied in
age from 19 to 53 years, and all but three were right-handed.

Sequential investment task

To examine experience-based and counterfactual learning sig-
nals, we had participants complete the “sequential decision-
making task,”which on each trial required them to place money
into a market (Fig. 1a; Chiu et al., 2008; Lohrenz et al., 2007).

1 As has been done previously, we restricted our definition of fictive
errors to the difference between the obtained and maximum outcomes in
a sequential decision-making task (Figs. 1a and b), instead of focusing
on relationships to models of regret-based decision making (Bell, 1982;
Loomes & Sugden, 1982). Additionally, these kinds of signals are often
termed “off-policy,” since they utilize information generated by behav-
ioral options not taken—that is, off the behavioral policy (Sutton &
Barto, 1998).
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Themarkets were based on real historical markets, such as stock
markets. The task consisted of 100 total trials divided among
five markets, similar to previous versions of the sequential
investment task (cf. Lohrenz et al., 2007). Thus, 20 trials were
presented per market. The five markets used in our task were:

1. the Dow Jones Industrial Average (7/26/1927–11/12/1929)
2. the Nikkei 225 Index (01/05/2000–04/24/2002)
3. the Deutsche Mark/US Dollar Exchange Rate (8/12/1983–

11/29/1985)
4. the NASDAQ Composite Index (09/11/1998–12/29/2000),

and
5. the Hang Seng Index (09/11/1992–12/30/1994).

During the sequential investment task, participants viewed
a screen that contained a trace of the market activity at the top
and information about the participant’s earnings at the bottom
(Fig. 1a). A slider bar was used to indicate the bet on each trial.
At the beginning of each trial, the slider bar turned red; the
participant then used the slider bar to indicate what percentage
of the current endowment should be invested in the market.
Participants had an unlimited amount of time to decide how
much to invest. The average bet across participants on a given
trial was 48.95 ± 24.24 (SD), and the bets ranged from 0 % to
100 %. After the investment decision was made, the slider bar

turned gray, and a variable delay of 4–10 s (in 2-s increments)
was imposed before the outcome was displayed. After the bet
was placed, the market value fluctuated up or down, and
participants consequently won or lost money. Each trial out-
come provided experiential information (how much money
was won/lost, Fig. 1b black pathway) and counterfactual
information (i.e., howmuchmoney could have been won/lost;
gray pathways in Fig. 1b). At the time of the outcome, the
change in the market value appeared, the percentage change in
the endowment was also displayed in red, and the total amount
of money that the participant had earned was updated. A
variable intertrial interval (4 – 10 s, in 2-s increments) oc-
curred before the start of subsequent trials.

TD errors are experience-based learning signals and were
calculated as the difference between market value (rt) and the
expected earnings (taken as the bet, bt): TDt = rt – bt. Market
value, rt, was a positive number, whereas the bet, bt, was a
percentage. Similarly, fictive errors are counterfactual learn-
ing signals and were calculated as the difference between the
maximum reward that could have been earned (the optimal
bet, bopt, multiplied by the market value, rt) and the actual
earnings (bet bt multiplied by the market value rt ): ft = bopt ·
rt – btrt. To enable comparisons with previous work (Chiu
et al., 2008; Lohrenz et al., 2007), we focused on “fictive
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Fig. 1 a Participants began the task with $100 (running total, left box).
On each trial, they had unlimited time to place a bet (slider bar) into a
market (graph). After a variable delay of 4–10 s, the change in market
value (trace), the amount of money gained or lost (right box), and the
overall earnings (left box) were updated. Trials were separated by an
intertrial interval of 4–10 s. b Information from the trial outcomes enabled
computation of experiential and counterfactual learning signals. A
learner’s actual experience is indicated in black. The actual choice tran-
sitions the learner from a given state, st, to a new state, st+1, while the

participant receives a reward, rt. Hypothetical experience is indicated in
gray. Information can be gained from this hypothetical experience, from
what would have happened if different choices had been made. Experi-
ential learning signals (black) correspond to TD errors, which reflect the
difference between rewards received and expected. Counterfactual learn-
ing signals (gray) correspond to fictive errors, operationalized as the
difference between the best possible outcome and the actual outcome. c
Functional data were restricted to a slab centered on the mesencephalon
and tilted to cover the substantia nigra and ventral tegmental area
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errors over gains” (ft
+), defined thus: ft

+ = 1 · rt – btrt, where,
if the change in market value is positive, the best investment
is a 100 % bet. When the market value goes down, fictive
errors are mathematically equal to the money lost, since in
that case, the optimal bet is 0 %.

Because TD errors are experience-based learning signals,
whereas fictive errors are constructed from hypothetical out-
comes, these two signals could be encoded in different brain
regions and could influence participants’ decisions in dis-
tinct ways. Indeed, previous work has shown robustly sepa-
rable striatal regions encoding TD and fictive errors (Chiu
et al., 2008; Lohrenz et al., 2007), as well as dissociable
behavioral effects for the different errors in nicotine addicts
(Chiu et al., 2008).

Behavioral data analysis

The behavioral data were analyzed using MATLAB (The
MathWorks, Natick, MA). We investigated the behavioral
impacts of signed TD errors, unsigned TD errors, and fictive
errors over gains on task behavior by relating each signal to
the change in bet from the current to the next trial. For signed
TD and fictive errors, we performed an additional behavioral
analysis, on the basis of previous work using this task (Chiu
et al., 2008; Lohrenz et al., 2007). We regressed the change
in bet from the current to the next trial against the current bet
and each signal. Regression coefficients for both TD and
fictive errors were correlated with the BOLD response from
mesencephalic regions encoding TD and fictive errors, re-
spectively (Figs. 2a and b in the Results).

MR image acquisition

All images were acquired using a 3-T Siemens Trio MRI
system in the Human Neuroimaging Laboratory at Baylor
College of Medicine. The visual stimuli were displayed on a
rear projection screen and viewed by the participants through
a mirror attached to the head coil. High-density foam padding
was used to stabilize each participant’s head to minimize head
motion during the experiment.

High-resolution (0.25-mm3 voxels) T1-weighted structur-
al images were acquired with an MP-RAGE pulse sequence
at the beginning of the scanning session.

All functional data were acquired using methods tailored
for imaging from the human brainstem (D’Ardenne et al.,
2008). A high-resolution echoplanar-imaging pulse sequence
(128 × 128 matrix, 1.5 × 1.5 mm2 in-plane voxels, 1.9-mm-
thick slices, TE 41 ms) that was cardiac gated was used to
collect functional images. Cardiac gating has been shown to
reduce the physiological noise associated with fMRI of
brainstem regions (Baria, Baliki, Parrish, & Apkarian, 2011;
Guimaraes et al., 1998). A finger pulse-oximeter that inter-
faces with the scanner was used to monitor the participant’s

pulse and to trigger the scanner during functional imaging.
The pulse-oximeter was placed on the middle finger of the
nondominant hand of each participant. The number of
slices was determined by the participant’s heart rate and
remained constant throughout the entire experiment. To
determine the number of slices, the experimenter observed
the participant’s heart rate during acquisition of the T1-
weighted image and then selected a conservative number
of slices. Additionally, the volume acquisition time (in
non-cardiac-gated imaging, this corresponds to the repeti-
tion time, TR) and the maximum length of the acquisition
window were determined on the basis of the participant’s
heart rate. The acquisition window corresponds to the
amount of time during which the scanner will wait for a
heartbeat to trigger the next image acquisition. The scan-
ner was set to acquire an image every second heartbeat; a
two-heartbeat interval was selected to balance the amount
of data that we could acquire with the increase in signal-
to-noise ratio that accompanies cardiac-gated brainstem
fMRI data acquisition (Zhang et al., 2006). For a partic-
ipant with a heart rate of 60 beats per minute (or
1,000 ms per beat), 18 slices would be used, with a
volume acquisition time of 1,800 ms and an acquisition
window of 1,900 ms. The volume acquisition time was
always set to be as fast as possible, depending on the
number of slices used. The flip angle (FA) was determined
according to the Ernst angle:

cos αEð Þ ¼ e −TR
T1ð Þ:

The flip angle is αE, TR is the repetition time (image
acquisition time, in this experiment), and T1 is the T1 value
for gray matter at 3 T. For 8 – 9 slices, FA= 60 deg; for 10 – 13
slices, FA= 70 deg; for 14 – 15 slices, FA= 75 deg; and for 16 –
20 slices, FA = 80 deg.

The midbrain was identified on the central sagittal slice of
the high-resolution structural, and a slab comprising
axial/coronal slices (each 1.9 mm thick) was centered on
the midbrain and tilted to include as much of the SN, VTA,
and striatum as possible (Fig. 1c). The mean number of slices
was 14.1 ± 2.3 (SD), with a maximum of 19 slices and a
minimum of eight slices across participants. The mean vol-
ume acquisition time was 1,128.2 ms ± 577.1, and the mean
acquisition window was 1,457.5.5 ms ± 227.8. All scanner
trigger times during functional imaging were recorded and
used in data analysis.

After functional scanning, a non-cardiac-gated whole-brain
functional image (TR/TE 2,500/42 ms, 25 slices, 6 mm thick,
30 % gap, FA 80 deg, four volumes) with the same center and
orientation as the functional images was acquired solely to
facilitate registration of the whole-brain structural image to the
functional data (D’Ardenne et al., 2008; for a visualization of
this method see Fig. 1 in Limbrick-Oldfield et al., 2012).
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Finally, to enable localization of the SN and VTA in the
midbrain, a proton-density weighted image (TR/TE
6,000/16 ms, FA 149 deg, echo spacing 15.6 ms, 0.75 ×
0.75 mm2 voxels in-plane) was acquired using the slice center
and orientation information from the functional images
(Oikawa, Sasaki, Tamakawa, Ehara, & Tohyama, 2002). On
the proton-density image, the SN are visualized as a
hyperintense (light) band between the cerebral peduncles
and the circular red nucleus. Once the SN are located, the
VTA can be readily identified, because it is medial to the SN
in the rostral two-thirds of the midbrain (Naidich et al., 2009;
Paxinos & Huang, 1995).

MR image analysis

First, functional data were corrected for the T1 variations
inherent to cardiac-gated collection (Guimaraes et al., 1998)

using software written and implemented in MATLAB (The
MathWorks, Natick, MA). The corrected data were then
preprocessed and analyzed using AFNI (Cox, 1996). To
account for the variable time between image acquisitions,
regressors were calculated at higher temporal resolution and
then resampled at image acquisition times. The functional
images were first corrected for slice-timing offset and mo-
tion. The motion correction parameters were used to deter-
mine whether the participant moved the head more than
1.5 mm in any direction. Additionally, motion correction
parameters were used as regressors of noninterest in multiple
linear regression analyses. The data were then spatially
smoothed with a 3-mm full-width-at-half-maximum Gauss-
ian kernel and mean subtracted. For all participants, the most
superior and inferior slices were excluded from the analysis,
as a precaution against those slices shifting into previously
unexcited regions.
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Fig. 2 a A random-effect GLM analysis revealed that a ventromedial
region of substantia nigra (SN) and ventral tegmental area (VTA) (–2, 14, –
10)* encoded signed TD errors. Blood oxygenation level dependent re-
sponses in the indicated region were significantly correlated with the
behavioral impact of TD errors (scatterplot). b The GLM analysis also
showed that a ventromedial region of SN and VTA (-4, 16, –11)* and a
dorsolateral region of SN (12, 21, –12)* encoded fictive errors over gains.
BOLD responses in the indicated regions were significantly correlated with
the behavioral impact of fictive errors (scatterplot). In both panels,
highlighted regions indicate all voxels surviving thresholding (n = 67; p

< .05, two-tailed t test, corrected for multiple comparisons). All MR images
are shown according to radiological convention (i.e., left = right). Statistical
maps were overlaid on a group-average proton-density weighted image
(axial images in panels A and B, and expanded coronal image in panel B)
or on a T1-weighted image (sagittal image in panel A) that have been
brainstem-normalized (indicated by asterisks; Napadow et al., 2006).
Scatterplots compare the results of regressions examining the influences
of TD and fictive errors on future bets in terms of the SN and VTA BOLD
responses to these signals
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The T1-weighted whole-brain structural image was aligned
to the functional data and then transformed into Talairach and
brainstem-normalized space (Napadow, Dhond, Kennedy,
Hui, & Makris, 2006). The transform to Talairach space and
brainstem-normalized space was then applied to the functional
data. Coordinates from the group analysis are reported in
brainstem-normalized space as Talairach coordinates with an
asterisk.

General linear model (GLM) analysis

For each participant, design matrices were created in which
each experimental event was considered an impulse stimulus
that generated a hemodynamic response function of unknown
amplitude. In addition to regressors for each experimental
event, the design matrix contained regressors of noninterest
that modeled baseline drift (scanning run mean, linear, and
quadratic trends) and head motion. The experimental events
modeled included the trial start, keypresses, indications of
when a new market started, and the trial outcome.

The equations for TD errors and fictive errors are described
above. As had been done previously (Chiu et al., 2008;
Lohrenz et al., 2007), TD error regressors were computed
using normalized values for the changes in market value and
bet on the basis of what the participant had already experi-
enced. Because the sequential investment task did not include
any reward omissions, we computed a regressor relatable to a
motivational salience signal by taking the absolute value of
the signed TD error regressor.

The fictive-error-over-gains regressor and the loss regres-
sor were orthogonalized with respect to the signed TD error
regressor by subtracting the orthogonal projection of the
fictive error onto the TD error from the fictive-error regres-
sor. It is important to note that we also ran the analysis with
the TD error regressor orthogonalized with respect to the
fictive-error regressor and the loss regressor, and the results
were unchanged.

The GLM analysis determined how mesencephalic dopa-
mine regions encoded experiential signed TD errors, fictive
error learning signals (Fig. 2 below), and unsigned TD errors
(Fig. 3 below). Statistical maps of all events of interest were
generated for each participant and then thresholded to iden-
tify brain regions where the regression coefficients (beta
values) for modeled events were significantly different from
zero (two-tailed t test).

The statistical significance of the results was determined
using a small-volume correction that was constrained on the
basis of the physical shape and size of the SN and VTA
complex. We defined an anatomical mask comprising the
SN and VTA using the hypointense regions on a group-
average proton-density weighted anatomical image. The SN
and VTA together are approximately 10–12 mm along the
ventrodorsal axis and 4–5 mm at the widest location along the

mediolateral axis (Naidich et al., 2009; Paxinos & Huang,
1995). We used the AFNI program 3dClustSim, which imple-
ments the cluster-size threshold procedure as a protection
against Type I error (Forman et al., 1995), to define a corrected
p value that fell within the physical size of the SN and VTA.
We determined that a corrected p value of .05 was achieved
with a minimum cluster size of six contiguous voxels, each
significant at p < .01. All group results were calculated in
brainstem-normalized space, and active regions within the
brainstem were visualized on brainstem-normalized T1-
weighted and proton-density anatomical images.

Correlation of mesencephalic and striatal BOLD activity

We performed a region-of-interest (ROI) analysis in the stria-
tum to determine the relationship between striatal and mesen-
cephalic BOLD activity to signed TD and fictive errors.
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Fig. 3 a A random effects GLM analysis revealed that a dorsolateral
region of human SN [10, 21, –11]* encoded the unsigned TD error. The
regions indicated show all voxels surviving thresholding (n = 67; p < .05,
two-tailed t test, corrected for multiple comparisons). MR images are
shown according to radiological convention (i.e., left = right). Statistical
maps are overlaid on a group-average proton-density weighted image, and
asterisks denote coordinates in brainstem-normalized space (Napadow
et al., 2006). b Schematic of a functional gradient in the human mesence-
phalic dopamine system. Ventromedial regions of SN and VTA are pri-
marily coded for signed TD errors, and dorsolateral regions of SN andVTA
are primarily coded for unsigned TD errors, which are relatable to salience
signals (Bromberg-Martin et al., 2010). The regions within SN and VTA
labeled f+ indicate areas found to code for fictive errors over gains
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Striatal ROIs were based on regions previously identified as
coding for signed TD errors (centroids [ ± 9, 14, – 2], on the
basis of Lohrenz et al., 2007) and for fictive errors (centroids
[ ± 8, 14, 4]). Because the number of slices included in the
functional MR data set was restricted on the basis of partici-
pant heart rate, we did not image from the entire striatum.
Striatum coverage spanned from z = 3 to – 15 mm (Talairach
coordinates). All 67 participants had data in the region where
TD errors were previously shown to be encoded, but just over
half had coverage in the region where fictive errors were
encoded (n = 40). For signed TD errors, we correlated regres-
sion coefficients, which are proportional to the magnitude of
the BOLD response, from the regions of the SN and VTA
shown to code for signed TD errors (Fig. 2a) with regression
coefficients from the signed TD error striatal ROI. Likewise
for fictive errors over gains, we correlated the regression
coefficients from the SN and VTA regions shown to encode
fictive errors (Fig. 2b) with regression coefficients from the
fictive-error striatal ROI. Scatterplots are included in the sup-
plemental materials, Fig. S1.

Results

To examine the complexity of the human brainstem dopa-
mine system, we identified behavioral correlates and mesen-
cephalic dopaminergic sources of three computational learn-
ing signals: signed TD errors, unsigned TD errors, and
fictive errors. Participants completed the sequential invest-
ment task (Chiu et al., 2008; Lohrenz et al., 2007) that
generated these signals while we measured BOLD responses
from SN and VTA (D’Ardenne et al., 2008).

We first related signed TD errors, unsigned TD errors, and
fictive errors over gains to task behavior. Signed TD errors
(p = 10–5, two-tailed t test) and fictive errors over gains
(p = 10–8, two-tailed t test) were found to have positive linear
relationships, indicated by the positive slopes of the best-
fitting lines, with the change in bets between the current and
the next trial. Unsigned TD errors showed an inverse rela-
tionship to subsequent bets (p = 10–14, two-tailed t test). We
replicated previous behavioral regression analyses for signed
TD errors and fictive errors over gains (cf. Chiu et al., 2008;
Lohrenz et al., 2007; and Fig. 2).

The functional data were analyzed using a GLM analysis,
and the resulting statistical parametric maps were thresholded
(p < .05, corrected for multiple comparisons). We additionally
performed a native-space within-subjects analysis to examine
the discriminability of sources for signed TD errors, unsigned
TD errors, and fictive errors, and also to test for directionality
differences between the signed and unsigned TD errors.

Signed TD errors were localized to ventromedial regions of
dopaminergic nuclei in the midbrain (Fig. 2a), whereas fictive
errors were localized in both ventromedial and dorsolateral

regions of the SN and VTA (Fig. 2b). Regression coefficients
indicating the behavioral influence of signed TD errors were
positively correlated with the BOLD response in the SN and
VTA regions that encoded TD errors (r = .25, p = .04; Fig. 2a).
The fictive errors over gains were also positively correlated
with the BOLD response in bothmesencephalic dopaminergic
regions encoding fictive errors (r = .31, p = .01; Fig. 2b).

The relationship between BOLD activity in mesencephal-
ic dopaminergic regions and in the striatal regions previously
identified as coding for signed TD errors and fictive errors
over gains (Lohrenz et al., 2007) was also examined. We
performed an ROI analysis on the regions of the striatum
previously shown to code for signed TD errors and fictive
errors and correlated the regression coefficients from mes-
encephalic and striatal regions for each signal separately
(Fig. S1). Mesencephalic BOLD responses to signed TD
errors were positively correlated with BOLD responses in
the caudate (Fig. S1A; r = .43, p = .0003). In the subset of
participants (n = 40; Fig. 1c) who had data in the region of
the putamen previously shown to code for fictive errors,
mesencephalic BOLD responses to fictive errors over gains
were positively related to BOLD responses in the putamen,
but this relationship was likely underpowered and was not
statistically significant (Fig. S1B).

Because we hypothesized that BOLD responses measured
from human SN would code for a signal relatable to the
motivational salience signal recently identified in nonhuman
primates (cf. Bromberg-Martin et al., 2010; Matsumoto &
Hikosaka, 2009), we examined the neural correlates of the
unsigned TD error. The sequential investment task does not
have reward omissions, and our experiment constituted a
special case in which a motivational salience signal could
be computed by taking the absolute value of the signed TD
error generated from this task. We found that BOLD re-
sponses in a dorsolateral region of SN were significantly
related to the unsigned TD error signal (Fig. 3a). At the
group level, sources for signed TD errors and motivational
salience signals within human SN and VTA are consistent
with electrophysiological results in nonhuman primates
(Matsumoto & Hikosaka, 2009).

To examine the topography and discriminability of mesen-
cephalic sources of the signed TD, unsigned TD, and fictive
error signals, we carried out a native-space within-subjects
analysis. We performed a sign test on the coordinates of the
peak voxel for each computational signal in order to test
whether they were overlapping within our test criterion of
4 mm (which corresponded to more than 2 voxels within-
plane in our data set). For signed TD errors and fictive errors
over gains, 58 of 67 participants (87 %) had nonoverlapping
sources, whereas peak voxels for unsigned TD errors and
fictive errors were nonoverlapping in 51 participants (76 %).

In comparing signed and unsigned TD errors, we found
that 55 of our 67 participants (82 %) had nonoverlapping peak
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voxels. We additionally tested for directionality differences
between the sources for signed and unsigned TD errors along
a ventromedial–dorsolateral gradient, with signed TD errors
being more ventromedial and unsigned TD errors being more
dorsolateral. Of the 55 participants with nonoverlapping
sources for signed and unsigned TD errors, 45 of them
(82 %) had signed TD sources that were more ventromedial
than the unsigned TD-error sources. Overall, the percentage of
participants showing a ventromedial/dorsolateral separation
pattern for signed and unsigned TD errors was 67 %.

Discussion

The sequential decision-making task provides an ecologically
valid framework for investigating computational-learning sig-
nals used in reward harvesting. We studied the behavioral cor-
relates of TD reward prediction errors, a signal relatable to
motivational salience, and of fictive errors over gains, while
using fMRI methods tailored to the human brainstem
(D’Ardenne et al., 2008) to identify their mesencephalic sources.

Our results identifying a region encoding fictive errors over
gains (Fig. 2b) agree with the known anatomy of the dopamine
system (Björklund & Dunnett, 2007) and with previous work
examining fictive errors (Abe & Lee, 2011; Chiu et al., 2008;
Hayden et al., 2009; Lohrenz et al., 2007), but they also suggest
a role for the dopamine system in the computation of counter-
factual information. In this task, fictive errors over gains quan-
tify a specific kind of counterfactual information—namely,
how much money the participant could have gained if the bet
had been different. This learning signal has previously been
integrated into TD reward prediction error learning algorithms
and has been shown to have an impact on behavior in humans
(Chiu et al., 2008; Lohrenz et al., 2007). Similar counterfactual
learning signals have been shown to drive brain activity and
behavior in animals (Abe & Lee, 2011; Hayden et al., 2009).

People with altered dopamine systems, because of brain
diseases like drug addiction, mental health disorders, and de-
generative pathologies like Parkinson’s disease, are known to
have deficits in decision making (Antonelli, Ray, & Strafella,
2011; Bach & Dolan, 2012; Bickel, Jarmolowicz, Mueller,
Koffarnus, & Gatchalian, 2012; Hamilton & Potenza, 2012;
Montague & Berns, 2002; Montague et al., 2006). In these
populations, tracking fictive errors could provide both behav-
ioral and neurobiological markers of the said deficits (see Chiu
et al., 2008, for examination of the behavioral and neural
correlates of fictive errors in nicotine addicts) and also could
identify possible targets for therapeutic intervention.

The behavioral correlates of signed TD errors and fictive
errors showed a positive linear relationship with BOLD re-
sponses in regions of the SN and VTA identified as encoding
these signals (Fig. 2). It is intriguing to note that some partic-
ipants’ behavioral regression coefficients for signed TD errors

and/or fictive errors were negative. A possible explanation for
these behavioral regression coefficients is erroneous percep-
tions of the outcome probabilities, or the gambler’s fallacy
(Tversky & Kahneman, 1971). Interestingly, the mesence-
phalic sources of fictive errors over gains are located in
regions of the SN andVTA known to target prefrontal regions.
Recent whole-brain fMRI studies examining the gambler’s
fallacy in similar decision-making tasks have shown that,
relative to the striatum, prefrontal regions selectively code
for responses relevant to the gambler’s fallacy (Jessup &
O’Doherty, 2011; Xue, Lu, Levin, & Bechara, 2011).

The negative relationship of the unsigned TD error signal
to future bets also supports the gambler’s fallacy as an
interpretation of task behavior. We additionally explored
the relationship between the unsigned TD error signal and
the associability term, as defined by the Pearce–Hall theory
(Pearce & Hall, 1980). The Pearce–Hall associability term
assesses how surprising an event is and aids in learning
relationships between cues and reinforcement. When rein-
forcement is fully predicted, learning from the associability
term is slow, but when reinforcement is not fully predicted,
learning is faster.

Because the Pearce–Hall associability term has been shown
to be encoded by the human amygdala (Li, Schiller,
Schoenbaum, Phelps, & Daw, 2011), we determined whether
the regions within the SN and VTA that we identified as
encoding unsigned TD errors were consistent with the known
origins of dopaminergic projections to the amygdala. In ro-
dents and nonhuman primates, A8 dopamine cells project to
the amygdala; the A8 cells are located dorsal to the lemniscus
(Dahlström & Fuxe, 1964). On an axial slice of a proton-
density image, A8 cells would be located dorsal (down) and
medial to the bright regions corresponding to the SN (Naidich
et al., 2009; Paxinos & Huang, 1995). The mesencephalic
region that we identified in the group analysis as encoding
unsigned TD errors (Fig. 3a) is indeed near the putative
location of A8 cells in humans, but because it does not extend
outside the SN, we cannot attribute it to an A8 source.

We also examined the behavioral impact of unsigned TD
errors for each participant, to see whether the effect agreed
with the Pearce–Hall model. To do this, we plotted the value
of the unsigned TD error on the current trial against the change
in bet from the current to the next trial. We computed the slope
of the best-fitting line for each participant and then determined
whether all slopes were different from zero. If the unsigned
TD error is relatable to the Pearce–Hall associability term, one
would expect to see a positive relationship between the
unsigned TD error and future changes in bets. We found the
opposite pattern: The current value of the unsigned TD error
was anticorrelated with upcoming bets (p = 10–14).

For signed TD errors, it is also interesting to consider
participants with both negative behavioral regression coeffi-
cients and negative BOLD responses (Fig. 2a). We found
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that most of these participants bet more aggressively after
negative TD errors generated from losses. This suggests that
the BOLD response that we measured was not signaling only
reward prediction errors per se, but could also be signaling
how behavior should adapt on the basis of that signal.

Mesencephalic sources of signed TD errors, unsigned TD
errors, and fictive errors over gains were separable at the
group level, and within subjects, the majority of participants
had separable sources for the two signals. When we tested
for directionality differences between signed and unsigned
TD errors, we found that the peak voxels coding for unsigned
TD errors were primarily located dorsolaterally to those
coding for signed TD errors. These results lend support to
our hypothesis that the human brainstem dopamine system is
computationally heterogeneous and organized as a function-
al gradient (Fig. 3b).

In subcortical structures such as the brainstem, BOLD
responses are thought to predominantly reflect the summation
of afferent synaptic inputs, as opposed to neuronal spiking
(Logothetis, 2008). It is important to note that the BOLD
response is a composite signal, reflecting many contributions
from neuronal populations. Also, mesencephalic dopaminer-
gic regions are composed of other neurons in addition to
dopamine. Our measurements included contributions from
these other neuronal populations and, additionally, contribu-
tions from substantia nigra pars reticulata. Previous work has
shown that midbrain BOLD responses encode computations
that dopamine neurons are known to carry out, suggesting a
dominant contribution of the dopamine system (D’Ardenne
et al., 2008). On the basis of synaptic input alone, wewould be
unable to distinguish between many of the potential compu-
tations subsumed by the SN and VTA. This issue is highlight-
ed with the comparison of the motivational salience signal and
TD error. Both of these signals derive from expected and
actual reward values, and differ only in their input–output
relations. Our human fMRI data agree well with animal elec-
trophysiology studies that have differentiated dopaminergic
regions on the basis of motivational salience versus TD error
output, suggesting that at least part of our measured BOLD
signal reflects regionally specific output, perhaps due to re-
current collateral synaptic activity.

Although functional differentiation in the dopamine
system has been observed in animal electrophysiology
(Brischoux et al., 2009; Matsumoto & Hikosaka, 2009),
such topography has not been anticipated previously in
humans. Our results highlight the utility of high-
resolution, cardiac-gated fMRI methods when combined
with precise hypotheses.
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