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Social norms in humans constrain individual behaviors to establish shared expectations within a social group. Previous work has probed
social norm violations and the feelings that such violations engender; however, a computational rendering of the underlying neural and
emotional responses has been lacking. We probed norm violations using a two-party, repeated fairness game (ultimatum game) where
proposers offer a split of a monetary resource to a responder who either accepts or rejects the offer. Using a norm-training paradigm
where subject groups are preadapted to either high or low offers, we demonstrate that unpredictable shifts in expected offers creates a
difference in rejection rates exhibited by the two responder groups for otherwise identical offers. We constructed an ideal observer model
that identified neural correlates of norm prediction errors in the ventral striatum and anterior insula, regions that also showed strong
responses to variance-prediction errors generated by the same model. Subjective feelings about offers correlated with these norm
prediction errors, and the two signals displayed overlapping, but not identical, neural correlates in striatum, insula, and medial orbito-
frontal cortex. These results provide evidence for the hypothesis that responses in anterior insula can encode information about social
norm violations that correlate with changes in overt behavior (changes in rejection rates). Together, these results demonstrate that the
brain regions involved in reward prediction and risk prediction are also recruited in signaling social norm violations.

Introduction
Social norms are standards of behaviors that are based on shared
expectations on how individual group members ought to behave
in a given situation (Hechter and Opp, 2001). When such expec-
tations are violated, people are willing to forego monetary payoffs
to punish the norm transgressors (Fehr and Gächter, 2002). Stud-
ies using a simple fairness game, the ultimatum game (Fig. 1A),
have demonstrated that people reject unfair splits of money even
at a cost of themselves, e.g., offers of 20% are rejected about half
the time (Camerer, 2003). It has been suggested that the presence
of such “irrationality” might be caused by negative emotions such
as anger and disgust provoked by unfair treatment (Pillutla and
Murnighan, 1995; van’t Wout et al., 2006). While these sugges-
tions are reasonable and in many cases compelling, their compo-
nent parts have not been related to computational models, which
could provide new insights into their evolutionary origins and
neural implementations.

Montague and Lohrenz (2007) proposed a computational de-
piction of generating normative behavior and concurrent emo-
tions. To react appropriately in a social exchange, an agent must

be able to (1) compute a shared norm about what is expected, (2)
detect deviations from that norm, and (3) choose the best actions
to correct these deviations. Norms provide baseline (prior) dis-
tributions of acceptable signals to be sent to or received from
others. In the ultimatum game, the Responder compares the offer
observed with the fairness norm and generates error signals car-
rying information about this deviation from the norm. These
error signals include the deviation of the offer from the mean
(norm prediction error), and the deviation of the square of the
prediction error from the estimated variance (variance predic-
tion error). The norm prediction errors are closely related to the
reward prediction errors in gustatory or monetary tasks encoded
in the midbrain dopamine neurons (Montague et al., 1996;
Schultz et al., 1997; Hollerman and Schultz, 1998; Bayer and
Glimcher, 2005; D’Ardenne et al., 2008) and in dopamine-
targeted brain areas, such as striatum and orbitofrontal cortex
(Pagnoni et al., 2002; McClure et al., 2003; O’Doherty et al., 2003,
2004; Pessiglione et al., 2006). The variance prediction errors
resemble the risk prediction errors reported in monetary choice
tasks in uncertain environments, involving the anterior insula in
particular (Preuschoff et al., 2006, 2008; d’Acremont et al., 2009).
When the expectation (norm) is violated, these error signals serve
as control signals to guide choices. They may also serve as the
progenitor of subjective feelings.

To study the computational substrates of social norm violations,
we designed a norm training task using the ultimatum game (Fig. 1)
to shift the fairness norm (subject’s expectation) so that we were able
to quantify norm prediction errors and variance prediction errors.
We also recorded the subjective feelings about offers. We hypothe-
sized that the brain areas involved in processing reward prediction
errors and risk prediction errors (striatum, anterior insula) are also
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recruited in signaling norm violations and that reports of subjective
feelings are related to these computational signals.

Materials and Methods
Subjects and the norm training task. One hundred twenty-seven subjects
(71 females, age: 30.0 � 8.9 years, age range: 18 –59 years) played the
ultimatum game while undergoing fMRI scanning. All subjects had nor-
mal or corrected-to-normal vision and had no history of neurological or
psychiatric disorders. Subjects gave informed consent to participate in
the experiments, and all procedures were performed in accordance with
the Institutional Review Board of the Baylor College of Medicine.

Subjects played the role of Responder in the game for 60 trials. Each
trial started with a new Proposer proposing how to split $20 between the
Proposer and the subject (Responder), and ended with the subject’s re-
sponse of accepting or rejecting the offer. If the Responder accepted the
offer, both sides got the distributed amounts. However, if the Responder

rejected, both sides got $0. To quantitatively manipulate subjects’ expec-
tation, we generated the offers from Gaussian distributions with low
mean $4, medium mean $8, or high mean $12, and standard deviation
$1.5, which was unknown to the subjects. Instead, we instructed the
subjects that they were going to play a new, randomly matched partner at
each trial. Subjects were paid according to their decisions in two ran-
domly chosen trials and were encouraged to treat each trial as the final
outcome. Additionally, at the end of 60% randomly selected trials, we
asked the subjects to rate their feelings about the received offers using
emoticons ranging from sad to happy on a 1–9 scale. The emoticons were
adapted from the self-assessment manikin (Lang, 1980). To ensure sampling
emotional ratings at a relatively even pace and without introducing the an-
ticipatory effect, every three of five trials were accompanied with a rating
screen. Visual display of the task was back-projected onto a computer screen
and viewed through a mirror placed in the scanner. All the choices were
made through hand-held button boxes. Stimuli were presented and subjects’

Figure 1. The norm training task. A, The ultimatum game. Subjects played the role of Responder in the ultimatum game. In each round, a new partner (Proposer) made an offer $x of $20. Subjects
decided to either accept (self got $x, partner got $20 � x) or reject (both got $0) the split. B, Visual display of the task. Each trial (60 trials in total) began with a new partner (blue square) making
an offer (4 s). The offer was displayed for 4 s. Subjects (green square) indicated their decision to accept or reject the offer by moving the yellow arrow (self-paced). On every three of five trials
(randomly ordered), subjects were asked to rate their feelings about the offer from 1 (sad face) to 9 (happy face) at a self-paced speed. The intertrial interval was 2– 4 s. C, Offers were sampled from
one of the three Gaussian distributions, orange curve (mean $4, SD $1.5), cyan curve (mean $8, SD $1.5), and purple curve (mean $12, SD $1.5). Group LM received low offers (orange curve) in the
first 30 trials and medium offers (cyan curve) in the last 30 trials. Group HM received 30 high offers (purple curve) first and then 30 medium offers. Groups ML and MH both started with 30 medium
offers, but received 30 low offers and high offers, respectively, in the second half of the task.
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behavioral responses were collected using NEMO (Human Neuroimaging
Laboratory, Virginia Tech Carilion Research Institute).

We randomly divided the subjects into four training groups. Group
High–Medium (HM; n � 31) received high offers in the first 30 trials,
sampled from a Gaussian distribution with mean $12 and standard de-
viation $1.5; group Low–Medium (LM; n � 34) received low offers in the
first 30 trials with mean $4 and standard deviation $1.5. Both groups
received medium offers in the last 30 trials with mean $8 and standard
deviation $1.5. Conversely, group Medium–High (MH; n � 30) and
group Medium–Low (ML; n � 32) received 30 medium offers (mean $8)
in the beginning and then 30 high (mean $12), or low (mean $4) offers,
respectively. Four subjects (2 in group LM, 2 in group HM) were ex-
cluded in the imaging analysis due to their excessive movement during
scanning. One additional subject in group HM was excluded in the sub-
jective rating analysis because her ratings were not recorded properly.

Bayesian observer model. We modeled subjects throughout the task as
Bayesian observers who had a prior of the distribution of offers u, a
Gaussian distribution with mean �, and variance � 2, denoted as follows:
u � N(�, � 2).

The mean � and variance � 2 were also uncertain, and � and � 2 were
mixed together. Therefore, the prior of offers u is given by:

p(u) � p(u � �, � 2)p(�, � 2) � p(u � �, � 2)p(� � � 2)p(� 2)

When a subject observed a proposal xt at trial t, he performed the Bayes-
ian update. The posterior was given by:

p�ut � xt� �
p� xt � ut� p�ut�1�

p� xt�

For convenience, we chose conjugate distributions for � and � 2, in which
the posterior distribution was in the same family as the prior distribution.

The distribution of mean �, conditioned on variance � 2, was given by:

� � � 2 � N(�̂, � 2/k)

The distribution of variance � 2 took the form of inverse-� 2 distribution,
denoted as:

� 2 � Inv � � 2(v, �̂ 2)

The initial values of the hyperparameters �, k, v, and � 2 were set as:

�̂0 � 10, k0 � 4, v0 � 10, �̂0
2 � 4

After observing a proposal xt at trial t, the values were updated as:

kt � kt�1 � 1, vt � vt�1 � 1

�̂t �
kt�1

kt
�̂t�1 �

1

kt
xt

vt�̂t
2 � vt�1�̂t�1

2 �
kt�1

kt
� xt � �̂t�1�

2

Based on the Bayesian observer model, we computed the following
parameters used in the imaging analysis:

Expected offer (norm) at trial t: E[ut] � �t

Norm prediction error: �t � xt � E[ut � 1] � xt � �t � 1

Variance (risk) prediction error (Preuschoff et al., 2008):

� xt � E�ut�1��
2 � E��t�1

2 � � �t
2 �

vt�1

vt�1 � 2
�̂t�1

2

Positive norm prediction error: max(xt � E[ut � 1], 0) � max(�t, 0)
Negative norm prediction error: max(E[ut � 1] � xt, 0) � max(��t, 0).
To examine the relationship between the norm prediction errors and

the queried subjective feelings, we used the R (R Development Core
Team, 2011) function lmer in the R package lme4 (Bates et al., 2011) to
perform a mixed linear regression of subjective feelings on the norm and
variance prediction error, with random effects (subjects as degree of
freedom) on each regressor, including the intercept. Estimation was per-

formed using maximum likelihood. Significance was assessed using the R
function ANOVA to compare (likelihood ratio) the full model with the
model reduced by each linear regressor in turn (https://stat.ethz.ch/
pipermail/r-sig-mixed-models/2009q3/002912.html) (Moore, 2010).

To model how subjects made decisions in the task, we combined the
inequality aversion model (Fehr and Schmidt, 1999) and the norm-based
utility function (Bicchieri, 2006), and defined that the utility of offer xt

was diminished by the degree of norm violations, including both the
positive and negative norm prediction errors (after Bayesian update):

U(xt) � xt � � � max(E[ut] � xt,0) � 	 � max(xt � E[ut],0).

� 	 0 is the sensitivity to the negative norm prediction errors (envy); it
was discretized in 0.1 increments, ranging from 0 to 10. 0 
 	 
 1 is the
sensitivity to the positive norm prediction errors (guilt). It was dis-
cretized in 0.1 increments.

We computed the probability of subjects’ actions according to the
softmax function as follows:

Probability of accepting proposal xt:

Paccept �
eU� xt�/�

1 � eU� xt�/�

Probability of rejecting proposal xt:

Preject �
1

1 � eU� xt�/�

� 	 (0, 10), the temperature, was discretized in 0.1 intervals.
We fitted the above Bayesian observer model to the behavioral data,

and estimated the values of �, 	, and � for each subject by maximizing the
log likelihood of choices over 60 trials.

Figure 2. Norm and variance prediction errors. A, Average norm prediction errors by round
for each group. B, Average variance prediction errors by round for each group.
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Feeling Bayesian observer. We also used the ideal Bayesian observer
model throughout the task to compute the feeling norm and variance
prediction errors. The feeling prediction errors were computed in the
same fashion as the norm prediction errors, except that the observations
were emoticon ratings. Subjects had a feeling prior, a Gaussian distribu-
tion with uncertain mean and variance. Subjects performed the Bayesian
update upon observing their own emoticon ratings. The updating equa-
tions were the same as those for offers. We assumed that the mean of
subjects’ initial feeling was neutral, taking the value 5. The initial values of
the hyperparameters �̂, k, v, and �̂ 2 were set as follows: �̂0 � 5, k0 � 4, v0

� 8, �̂0
2 � 2.

Image acquisition and analysis. The anatomical and functional imaging
was conducted on a 3.0 tesla Siemens Trio scanner. High-resolution
T1-weighted scans (1.0 
 1.0 
 1.0 mm) were acquired using an MP-
RAGE sequence (Siemens). Functional images were acquired using echo-
planar imaging, and angled 30 degrees with respect to the anteroposterior
commissural line. The detailed settings for the functional imaging were:
repetition time � 2000 ms; echo time � 25 ms; flip angle � 90°; 37 slices;
voxel size: 3.4 
 3.4 
 4.0 mm.

Images were analyzed using SPM2 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm2/). Slice timing correction was first applied to
temporally align all the images. Motion correction to the first functional
image was performed using a six-parameter rigid-body transformation.
The average of the motion-corrected images was coregistered to each
subject’s structural images using a 12-parameter affine transformation.
Images were subsequently spatially normalized to the Montreal Neuro-
logical Institute template by applying a 12-parameter affine transforma-
tion, followed by nonlinear warping using standard basis functions.
Finally, images were smoothed with an 8 mm isotropic Gaussian kernel
and then high-pass filtered (128 s width) in the temporal domain.

General linear models (GLM) were then specified for each subject. All
visual stimuli and motor responses were modeled in the design matrix
that was constructed by convolving each event onset with a canonical
hemodynamic response function in SPM2. Residual effects of head mo-
tion were corrected by including the estimated six motion parameters for
each subject as covariates. Additional parametric regressors were con-

volved to the event when offers were displayed and modeled in separate
GLM analysis. These regressors of interest included: norm prediction
errors (see Fig. 3A), emoticon ratings (see Fig. 3C), positive norm pre-
diction errors (see Fig. 4A), and negative norm prediction errors (see Fig.
4B). For the results shown in Figure 5, both norm prediction errors and
variance prediction errors were entered in the same GLM at the event of
offer revelation without applying orthogonalization. Similarly, for the
results shown in Figure 7, both feeling prediction errors and variance
prediction errors were entered in the same GLM at the event of offer
revelation without applying orthogonalization. Beta maps were esti-
mated for the regressors of interest and then entered into a second-
level random effect analysis. Data were displayed using xjView tool
box.

In the region of interest (ROI) analysis, 6-mm-radius spherical masks
of the medial orbitofrontal cortex (mOFC)/ventromedial prefrontal cor-
tex (vmPFC), anterior insula, and ventral striatum were generated using
MarsBaR toolbox (Brett et al., 2002). The signals extracted from the
preprocessed images were first averaged within the voxels of the ROI. The
spatially averaged signal was linearly detrended for the entire task. Signals
time-locked to the event when offers were displayed were generated by
linear interpolation. The percentage change in hemodynamic signal was
averaged during the 4 – 8 s period following the offer revelation. The
BOLD responses were grouped according to the prediction errors com-
puted from the Bayesian observer model trial by trial at $2 intervals. The
mean � SE of the resulting BOLD signal was plotted in $2 bins for
prediction errors by pooling all the trials together.

Figure 3. Subjective feelings correlated with norm prediction errors, and both involved the mOFC/vmPFC activation. A, Voxels correlated with norm prediction errors, p � 0.05, FDR corrected.
Peak voxel (4, 40,�16), t �4.38. B, Emoticon ratings displayed a linear relationship with norm prediction errors. The correlation coefficient was r �0.62. C, Voxels correlated with emoticon ratings
of the offers received, p � 0.01, FDR corrected. Peak voxel (4, 40, �16), t � 4.75. D, ROI analysis using a 6-mm-radius spherical mOFC/vmPFC mask centered on the peak voxel (4, 50, �16) from
Harvey et al. (2010). The averaged BOLD response displayed a linear relationship with norm prediction errors. Color bars display t scores.

Table 1. Estimates from regression of feelings on prediction errors

Estimate SE t value p value

Constant 5.352 0.114 47.33 �2e-16
PE 0.616 0.025 24.51 �2e-16
VPE �0.003 0.006 �0.55 0.585

PE, Prediction error; VPE, variance prediction error. N � 123.
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Results
Subjects played the role of Responder in the one-shot ultimatum
game (Fig. 1A). They were told they would interact with a new
partner at each trial for 60 trials in total. The visual stimuli pre-
sented at a given trial are shown in Figure 1B. We manipulated
the fairness norm by randomly assigning subjects into the four
groups: LM, ML, HM, and MH (for details, see Materials and
Methods). Recall that the LM group saw 30 low offers, followed
by 30 medium offers, and similarly for the other three groups.
Offers in each condition were sampled from a Gaussian distribu-
tion with low ($4), medium ($8) or high ($12) means, as shown
in Figure 1C.

Norm prediction errors
To quantify the changes in the perception of fairness norm, we
modeled an ideal Bayesian observer throughout the task for each
subject. For simplicity, we assumed that subjects had the same
prior distribution about the fairness norm, a Gaussian distribu-
tion with mean $10 and standard deviation $1.5. At each trial, the
mean and the variance of the prior distribution were updated
according to Bayes rule when a new offer was observed. The
posterior was also a Gaussian distribution. The detailed algo-
rithm is included in Materials and Methods. Hence, we had a
trial-by-trial measure of the mean and variance for each subject.
For convenience, we called the mean of this distribution the
norm. The difference between an actual received offer and the
expected offer (the prior mean) was the natural prediction error
signal, the norm prediction error. Similarly, the variance predic-

tion error was taken as the deviation of the square of the norm
prediction error from the estimated variance. Figure 2A shows
the average prediction error by round, by group, while Figure 2B
shows the average variance prediction error by round, by group.

We first examined brain regions correlated with norm predic-
tion errors. A random-effect analysis across all subjects (n � 123)
using norm prediction errors as a regressor at the event of offer
presentation throughout the experiment revealed that mOFC/
vmPFC activity covaried with norm prediction errors [Fig. 3A;
p � 0.05, whole-brain false discovery rate (FDR) corrected]. As
mentioned in the introduction, those norm prediction errors
may be related to the subjective feelings about the offers. To
examine the relationship between the norm prediction errors and
the subjective feelings, we pooled the trials from all the subjects
and found the emoticon ratings significantly correlated with
norm prediction errors (r � 0.62, p � 10�6) and they formed a
linear relationship (Fig. 3B). As the degrees of freedom may be
overstated in a pooled regression, we also ran a mixed-effects
regression with subject as the degree of freedom and the norm
prediction error and variance prediction errors as regressors. The
results are summarized in Table 1. The norm prediction error was
again highly significant.

We identified brain regions correlated with the subjective feel-
ings by using the emoticon ratings as a regressor at the event of
offer presentation in the GLM analysis for each subject through-
out the experiment and then performing a random-effect analysis
across all subjects (n � 122). When the offers were revealed, the
activity of vmPFC/anterior cingulate cortex, nucleus accumbens,

Figure 4. Differential striatal and overlapping mOFC response to positive and negative norm prediction errors. A, Voxels correlated with positive norm prediction errors, p � 0.05, FDR corrected.
B, Voxels correlated with negative norm prediction errors, p � 0.05, FDR corrected. mOFC was negatively correlated with negative norm prediction errors. C, Overlay of voxels from A (yellow); B, left
(red); and B, right (green).
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and posterior cingulate cortex correlated with the emoticon ratings
(p � 0.01, whole-brain FDR corrected; Fig. 3C). The same peak
voxel (4, 40, �16) of the mOFC/vmPFC was activated in response to
the norm prediction errors (t � 4.38; Fig. 3A) and the subjective
feelings (t � 4.75; Fig. 3C). To visualize the mOFC/vmPFC activity
pattern in terms of norm prediction errors, we performed an ROI
analysis using a 6-mm-radius spherical mask centered on the peak
voxel of vmPFC reported in another study on preference rating
(Harvey et al., 2010), collapsing the trials from all the subjects. The
BOLD response of the vmPFC mask displayed a linear relationship
with the norm prediction errors (Fig. 3D).

We further divided the norm prediction errors into a positive
component and a negative component, and ran additional GLM
analysis using the positive and negative norm prediction errors as
separate regressors. We found that the activity of ventral stria-
tum, vmPFC, and anterior insula correlated with the positive
norm prediction errors (Fig. 4A; p � 0.05, whole-brain FDR
corrected). The striatum and anterior insula also correlated with
the negative norm prediction errors, but the mOFC negatively
correlated with the negative norm prediction errors (Fig. 4B; n �
123, p � 0.05, whole-brain FDR corrected). When overlaying the
activity patterns of the positive and negative norm prediction
errors, we found that the ventromedial part of striatum specifi-
cally correlated with the positive norm prediction errors, whereas
a more dorsolateral portion of striatum correlated with the neg-
ative norm prediction errors (Fig. 4C). But both the anterior
insula and the mOFC had overlapping activity patterns. The
common region of the mOFC further validated its linear relation-
ship with norm prediction errors, as shown in Figure 3.

We next looked for regions correlated with the variance predic-
tion errors. From a random-effect analysis using variance prediction
errors as a regressor, we found that the bilateral anterior insula and
ventral striatum had robust responses to risk prediction errors (Fig.
5A; p � 0.05, whole-brain FWE corrected). We took the mean voxel
of the right anterior insula reported to encode risk prediction errors
in a financial decision-making task (Preuschoff et al., 2008) and gen-
erated a 6-mm-radius spherical mask around it. The ROI analysis
showed that the BOLD responses of the anterior insula displayed a
U-shape activation pattern to the norm prediction errors (Fig. 4B).

Norm training effect
The two groups LM and HM are of particular interest. Group LM
(n � 32) played 30 offers with low mean $4 (unfair condition)
first, and then switched to play 30 offers with medium mean $8
(fair condition). Group HM (n � 31) played 30 offers with high
mean $12 (hyper-fair condition) and then 30 offers with medium
mean $8 (fair condition). We focused on the latter half of the task
when both groups played the fair condition with same offer dis-
tributions (Fig. 6A). We found significant differences in the re-
jection rates between the two groups (Fig. 6B). Group LM,
preconditioned on unfair offers, rejected offers $6-$8 less fre-
quently than group HM, preconditioned on hyper-fair offers
(Fig. 6B). In addition, we asked subjects to rate their feelings
about the offers received in 60% of the trials using emoticons
ranging from sad to happy. Group LM rated themselves much
happier about the medium offers than group HM (Fig. 6C).

To examine whether there were any differences in neural re-
sponses, we applied the GLM to subjects’ fMRI brain images.

Figure 5. Anterior insula and striatum activity correlated with variance prediction errors. A, Voxels correlated with variance prediction errors, p � 0.05, FWE corrected. Right anterior insula, peak
voxel (32, 24, �4), t � 8.70; right striatum peak voxel (12, 4, �8), t � 7.10. B, ROI analysis using a 6-mm-radius spherical mask of the right anterior insula centered on the voxel reported in
Preuschoff et al. (2008). The BOLD responses of the right anterior insula displayed a U-shape relationship with norm prediction errors. Color bars display t scores.
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First, we constructed a contrast of the offer presentation event be-
tween group LM and group HM in the fair condition. Neurally,
group LM had higher activations in nucleus accumbens and vmPFC
than group HM (Fig. 6D; p � 0.001, uncorrected; nucleus accum-
bens FDR corrected at cluster level, p � 0.05). The activation of the
reward regions when observing the offers, the happier feelings to-
ward the offers, and the decreased rejection rates indicate that we
were able to change both the perception of the fairness norm (expec-
tation) and the resulting decision-making process.

To relate subjects’ choices to the prediction errors, we modeled
subjects’ choices in the task using a norm-based utility function
adapted from Bicchieri (2006) (for details, see Materials and Meth-
ods). The commonly used inequity-aversion utility function (Fehr
and Schmidt, 1999) is not satisfactory in our situation given that
subjects changed their responses to the same unequal outcomes
shown in Figure 2. Instead of caring about the unequal divisions
between two players, players were sensitive to norm violations, and
the utility of an offer received is discounted by its degree of deviations
from norm. We considered both the negative and positive deviations
from norm in the utility function since hyper-fair offers sometimes
were also rejected and subjects reported that they preferred fair offers
the most. The envy coefficient, � � 0, measures a player’s sensitivity
to negative deviations from norm (negative norm prediction errors).
The guilt coefficient, 0 
 	 
 1, specifies a player’s sensitivity to
positive deviations from norm (positive norm prediction er-
rors). We combined the utility function with a logit (softmax)
choice function and fitted this model to the actual behavior in the
task. For each subject, we estimated his or her envy and guilt
coefficients by maximizing the log likelihood of choices over 60
trials. Table 2 presents the summary statistics of the coefficient
estimates and log-likelihoods of the fit, and Table 3 gives the
average negative log-likelihoods of the fit by group.

Through the norm-based utility function estimated for each sub-
ject, we had individual measures of sensitivity to norm violations,

i.e., the envy and guilt coefficients. We were interested in finding
brain responses modulated by individuals’ sensitivity to norm viola-
tions. We focused on the negative norm prediction errors and the
envy coefficient because only a few subjects had nonzero guilt coef-
ficients. To examine this, we took the beta images corresponding to
the negative norm prediction errors and entered them into a second-
level analysis using each subject’s envy coefficient as a covariate. We
found that the dorsal anterior cingulate cortex (dACC) negatively
correlated with the sensitivity to negative norm prediction errors
(Fig. 7A; p � 0.05, FDR corrected). We extracted the beta
values of the peak voxel (8, 24, 36) from each subject and
plotted them against the envy coefficient; the correlation co-
efficient was r � �0.36, p � 6.24 
 10 �6 (Fig. 6B).

Feeling prediction errors
Recent work by Prelec and colleagues (Bodner and Prelec, 2003;
Mijović-Prelec and Prelec, 2010) led us to hypothesize that in addi-
tion to lower-level mechanisms for tracking parameters of environ-
mentally salient probability distributions, there might be separate

Table 2. Summary statistics of parameter estimates from choice model

Mean Median SD

Envy 3.38 1.75 3.69
Guilt 0.46 0 0.47
Temperature 1.84 0.96 2.15
Log likelihood 8.71 6.01 9.37

N � 123.

Table 3. Goodness-of-fit by group for choice model

LM
(N � 32)

ML
(N � 32)

HM
(N � 29)

MH
(N � 30)

Average negative log-likelihood 13.57 11.15 5.44 4.12

Total N � 123.

Figure 6. Norm training effect in group HM and LM when both received medium offers. A, Average offers received by the group HM and LM along the course of the task. B, Comparison of the rejection rates
between group LM (n � 34) and group HM (n � 31) when both received medium offers. Group LM preadapted to 30 low offers rejected medium offers $6 – 8 less frequently than group HM players who
preadapted to 30 high offers, *p�0.05. C, Comparison of the emoticon ratings between group LM and group HM when both received medium offers. Group LM players rated their feelings about medium offers
$6 –9 higher (happier) than group HM players, *p � 0.05. Error bars represent SE. D, SPM contrast between groups LM and HM in the last 30 trials when medium offers were revealed. Group LM had greater
activation in the nucleus accumbens and ventromedial prefrontal cortex, p � 0.001, uncorrected. Nucleus accumbens (35 voxels), FDR corrected at cluster level, p � 0.05. Color bar displays t scores.
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neural mechanisms for monitoring how the
subject felt—mechanisms for self-signaling.
To probe self-signaling of feelings, we con-
structed a Bayesian ideal observer model of
the subjects’ feelings (emoticon ratings) and
estimated the feeling prediction errors from
the model. The feeling norm prediction er-
ror was defined as the difference between
the actual reported feeling and the expected
feeling. The feeling variance prediction er-
ror was the difference between the deviation
between the squared feeling norm predic-
tion error and the estimated variance. We
found activity in vmPFC, nucleus accum-
bens, and posterior cingulate cortex corre-
lated with feeling norm prediction errors
(Fig. 8A; p � 0.01, whole-brain FDR cor-
rected). The bilateral anterior insula activity
correlated with feeling variance prediction
errors (Fig. 8B; p � 0.05, whole-brain FDR
corrected), similar to the norm variance
prediction errors. Notably, striatum was not
activated by the feeling variance prediction
errors.

Discussion
In this work, we used a norm-training task
and developed a Bayesian ideal observer
model to dynamically track the mean and
variance of a norm distribution and serve as
a dynamic quantitative probe of norm vio-
lations. Using fMRI, we identified brain
areas parametrically activated by the learn-
ing signals identified by this model. Striatal
areas implicated in reward prediction error
processing in gustatory or monetary tasks
are also activated by norm prediction errors.
Similarly, the area activated by risk predic-
tion errors in monetary tasks—bilateral an-
terior insula (Preuschoff et al., 2008)—is
activated by the norm variance prediction
error.

Further, by repeatedly exposing subjects with unfair, fair, or
hyper-fair offers, we were able to change subject expectations of
offers received in the one-shot ultimatum game without top-
down cognitive manipulation. Indeed, subjects’ responses to the
same offers were modulated by context. We demonstrate that
unpredictable shifts in expected offers creates a difference in re-
jection rates for otherwise identical offers by subject groups pre-
adapted to either high or low offers.

We modeled the change in subjects’ ongoing expectation of of-
fers using the Bayesian observer model and computed two predic-
tion error signals: the norm prediction error and the variance
prediction error. The norm prediction errors predicted subjective
feelings as measured by within-task emoticon ratings. Both the norm
prediction errors and the subjective feelings recruited the mOFC.
The mOFC has been found to represent valuation of both primary
and social rewards and mediate hedonic experience (O’Doherty,
2004; Kringelbach, 2005). In addition, mOFC displays a relative cod-
ing of value in a context-dependent manner (Seymour and Mc-
Clure, 2008). Studies have also shown that OFC neurons signal
outcome expectancies, which is crucial for adaptive behavior
(Schoenbaum et al., 2009). Our finding that the mOFC was

activated by both the norm prediction errors and the subjec-
tive feelings extends its role to normative decision-making.

The anterior insula and striatum correlated with variance predic-
tion errors, and the anterior insula in particular displayed a U-shape
response to the norm prediction errors. It has been shown that an-
terior insula correlates with the degree of unfairness and predicts the
probability of rejecting unfair offers in fairness games (Sanfey et al.,
2003; King-Casas et al., 2008). Here we were able to provide a com-
putational account of the role of the anterior insula and extend its
role in encoding risk prediction errors during individual financial
decision-making to norm violations during social exchange. To-
gether with the norm prediction errors, these results provide evi-
dence that the brain does not just track simple economic variables in
the task, but instead builds models of the distribution of rewards and
then generates error signals around that distribution. Anterior insula
activation has also been associated with interoception and a wide
range of emotions including disgust (Damasio et al., 2000; Wicker et
al., 2003). It has been recently suggested to play an important role in
generating awareness and subjective feelings (Craig, 2002, 2005,
2009). The subjective feelings we queried in the task focused on
subjects’ preferences about the outcome. Together with its role in
risk processing, the anterior insula may respond to emotional

Figure 7. Negative norm prediction error and envy coefficient (alpha). A, Voxels correlated with the individual’s sensitivity to the
negative norm prediction errors, the envy coefficient (alpha). Second-level analysis on beta images correlated with negative norm
prediction errors when offers were revealed. A simple regression using alpha was applied to those beta images. dACC was nega-
tively correlated with alpha, p � 0.05, FDR corrected. B, Beta values from the peak voxel (8, 24, 36) of dACC had negative
correlation with alpha, r � �0.39.
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arousal evoked by deviations from norm, which we did not assess
in this study. Patients with insular lesions have reported re-
duced arousal in response to both unpleasant and pleasant pic-
tures (Berntson et al., 2011).

We also observed a differential activation pattern in striatum to
the positive and negative norm prediction errors. The ventromedial
part of striatum specifically correlated with the positive norm pre-
diction errors, whereas a more dorsolateral portion of striatum cor-
related with the negative norm prediction errors. The ventromedial
part of striatum receives inputs from vmPFC and OFC, and the
more dorsolateral part of striatum receives inputs from dACC
(Voorn et al., 2004; Haber and Knutson, 2010). This anatomical
characterization matches the functional activity patterns identified
from the GLM analysis. Indeed, the vmPFC/OFC coactivated with
the ventromedial striatum in response to the positive norm predic-
tion errors, whereas the dACC coactivated with the more dorsolat-
eral region of striatum in response to the negative norm prediction
errors. The role of dACC involves conflict monitoring and cognitive
control (Botvinick et al., 1999, 2004; Kerns et al., 2004). We also
found that dACC activity tended to have higher response to negative
norm prediction errors in subjects with a low-envy coefficient (ra-
tional, accepted more unfair offers). This suggests that those subjects
experienced bigger conflicts and engaged more cognitive control
when receiving unfair offers than subjects with high-envy coeffi-
cients (irrational, rejected unfair offers frequently).

Like others (Fehr and Gächter, 2002; Sanfey et al., 2003; Boyd
et al., 2010), we suggest that the rejection rates and changes in
rejection rates observed during our experiment provide strong
evidence that this paradigm probes social-processing mecha-
nisms. For example, subjects reject positive-valued offers
throughout the entire experiment— both during the precondi-
tioning (e.g., on the high offer distribution) and during postcon-
ditioning (e.g., on the medium offer distribution). In the case of a

rejected offer, the subject receives no re-
ward. There is no reward-harvesting ra-
tionale for a human to reject nonzero
offers; therefore, we find it problematic to
argue that we are observing strictly
reward-related responses when no reward
is received and this nonreceipt is due to a
choice made by the subject. If subjects
were passive recipients of the proposals,
then one could argue that they might sim-
ply be building models of the proposal
distributions and their brains are re-
sponding to fluctuations from expecta-
tions of the model. However, in the
current design, the subjects willfully
choose whether to accept a proposal so
that a receipt of 0 reward is due to the
subject, not the proposal size. This too
would not be the behavior of a simple
reward-gathering agent.

Instead, we suggest that the positive re-
jection rates seen throughout the experi-
ment and the large change in rejection
rate when the distributions are switched
are best explained by a social mechanism
that seeks to send a signal back to the pro-
poser. The well reported need to punish
unfairness in other humans (Fehr and
Gächter, 2002; Boyd et al., 2010) also sup-
ports a social mechanism in this experi-

ment. This discussion raises the issue of how an optimal
reinforcement-learning agent might execute this task.

Absent some assumption about future consequences of accept-
ing offers, any reasonable reward-harvesting reinforcement learning
model would, either through prior assumptions or through learn-
ing, accept all offers. There is no reason short of some kind of further
model of the other player that a shift in the offer distributions should
cause a rejection rate change. Even if a reinforcement learning model
was building a sufficient statistic model of the offer distributions,
there is no incentive to ever reject an offer.

A prominent theory of decision making in fairness games rests on
the concept of inequity aversion (Fehr and Schmidt, 1999). In gen-
eral, inequity-averse players care about the differences in payoffs
between self and partner, which motivates the behavior observed,
including rejection in the ultimatum game. Fehr and Schmidt (1999)
commit to a specific form of a utility function using an absolute level
of inequality that captures these ideas. Our results concerning the
differing rejection rates in the separately trained groups after the
offer distribution switch suggest that this inequity aversion theory is
inadequate. Chang and Sanfey (2011) have recently reported a sim-
ilar finding, also using a model of behavior incorporating deviations
from expectation. Importantly, however, these investigators estab-
lished the subjects’ expectations beforehand and did not dynami-
cally model changes in expectations. While Chang and Sanfey (2011)
and our results both suggest that the Fehr–Schmidt model is inade-
quate, our result that rejection rates for offers from a fair distribution
are different for differentially conditioned groups shows that a dy-
namic, learning approach is needed for understanding social norms.

Finally, also using a Bayesian ideal observer model of the sub-
jects’ feelings, we explored the possibility that there might be
separate neural mechanisms for monitoring how the subject
felt—mechanisms for self-signaling (Bodner and Prelec, 2003;
Mijović-Prelec and Prelec, 2010), in addition to lower-level

Figure 8. Brain regions correlated with feeling prediction errors. A, Voxels correlated with feeling norm prediction errors, FDR
corrected, p � 0.01. Nucleus accumbens (8, 12, �8), t � 3.96; vmPFC (4, 40, �16), t � 5.01; posterior cingulate (�4, �32, 40),
t � 4.65. B, Voxels correlated with feeling variance prediction errors, FDR corrected, p � 0.05. Right anterior insula (40, 20, 0), t �
4.69; left anterior insula (�32, 28, 4), t � 4.30. Color bars display t scores.
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mechanisms for tracking parameters of environmentally salient
probability distributions. We found that the feeling norm predic-
tion error tracked similar regions in vmPFC and striatum as the
norm prediction error, but that the feeling variance prediction
error recruited anterior insula, but not striatum, suggesting a
physiological dissociation between these types of error signals.

Social dysfunction is a defining feature of psychiatric disease
and involves both cognitive and emotional impairments. As such,
norm processing may come to play an important role in under-
standing psychiatric disease. A previous study has shown that
norm processing is impaired in individuals with borderline per-
sonality disorder (King-Casas et al., 2008). In this paper, we illu-
minate the neural substrates of a computational depiction of
social norm violations. These neural signals may find use as
objective biomarkers helping characterize mental disorders
(Kishida et al., 2010; Montague et al., 2012).
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