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ABSTRACT

We examined multiple deep neural network (DNN) architectures for suitability in predicting neuro-
transmitter concentrations from labeled in vitro fast scan cyclic voltammetry (FSCV) data collected on
carbon fiber electrodes. Suitability is determined by the predictive performance in the "out-of-probe"
case, the response to artificially induced electrical noise, and the ability to predict when the model
will be errant for a given probe. This work extends prior comparisons of time series classification
models by focusing on this specific task. It extends previous applications of machine learning to
FSCV task by using a much larger data set and by incorporating recent advancements in deep neural
networks. The InceptionTime architecture, a deep convolutional neural network, has the best absolute
predictive performance of the models tested but was more susceptible to noise. A naive multilayer
perceptron architecture had the second lowest prediction error and was less affected by the artificial
noise, suggesting that convolutions may not be as important for this task as one might suspect.

1 Introduction

The function of the neurotransmitters Dopamine (DA), Serotonin (5HT), Norepinephrine (NE) in brains, and the role of
their high frequency (> 1 Hz) fluctuations are not well understood. Fast scan cyclic voltammetry (FSCV) using carbon
fiber microelectrodes (probe) is the primary method used in rodents[1][2], non-human primates[3][4][5][6], and, more
recently, in humans [7][8][9][10] to make sub-second measurements of these neurotransmitters. In FSCV a voltage
waveform is applied to the probe and the invoked current is measured and used to make neurotransmitter concentration
estimates. Example voltage and current waveforms are shown in Figure 1. In this paper we consider the case of FSCV
in awake humans during brain surgery. This application requires estimates of neurotransmitter concentrations to be
generated from in vivo currents using models trained in vitro data sets. Inherit differences between individual probes
and the instability [8][11] of their induced current responses motivates the use of “out-of-probe” test sets to validate
these models. The average in vitro current response from a sample of probes in shown in Figure 1 and demonstrates
these differences.

We viewed predicting concentrations from current traces as an amalgamation of a time series regression and an image
regression task. The task, like prior work in the time series domain, has data that is sequentially gathered and thus
exhibits high auto correlation. Additionally, some structures appear to move within the window of data collection. It
differs from most time series work and is more similar to image-based tasks in that the observation is coincident in time
with the stimulus. It differs from both domains as it is a regression task and only has a single channel input. Much
work has been done quantifying the performance of various architectures for time series classification [12] and we
aimed to adopt and compare the successful architectures to this specific regression problem. Two architectures of note
from that paper are the InceptionTime Network [13] and the Fully Convolutional Network [14]. In the time since that
publication, more work has been done on time series classification of biological signals, incorporating advancements
with transformer networks [15], and convolutional neural network derivatives of transformers [16]. Prior attempts to use
machine learning techniques have found success with principle component regression [11][17], penalized regression
models [8][9], and DNNs with a different prepossessing approach[18].

To make this endeavor computationally feasible we constrained all models to have the same number of parameters and
training procedure as the InceptionTime architecture [13]. The InceptionTime architecture was chosen as the baseline
as it had the best performance of the implemented models in [12]. When possible values for hyperparameters were
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Figure 1: The command voltage and example current responses used in FSCV. The top plot shows a single 100 ms
sweep with the active 10 ms section of the command and corresponding current denoted with vertical lines. The bottom
plot of the 10 ms active section used by the models. The various color lines are the mean sweep for a probe averaged
over all of its sweeps.

taken directly from the paper referenced. If it was not possible to use the same hyperparameter values, values were
selected to match the parameter constraint.

The various model architectures are evaluated to compare their performance regarding both relative correctness/linearity,
and absolute correctness. Absolute predictive correctness is clearly important and allows direct comparison of true
values across individuals or in the weaker case direct comparison of relative values across individuals. Relative
predictive accuracy, a weaker requirement, is still useful. It allows for directional and proportional comparison across
individuals. Further the confusion between DA and NE, where an increase in one analyte would cause an increase in
prediction of the other analyte, is of extra note as previous work has had trouble with this problem [19].

We also consider how the models respond to electrical noise. In ideal conditions, data collection can be performed in a
Faraday cage resulting in a low noise environment. In the human brain surgery case, medically required electronics
induce small perturbations in the current. The largest of these perturbations occur at 60 hertz (The power grid frequency).
This periodic noise has been observed to be either sinusoidal in nature or sharp with relatively large spikes. As deep
neural networks have been shown to be effected by noise or perturbations in unintuitive ways [20][21], the impact of
this noise is of greater concern.
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2 Methods

2.1 Data sets

Data was collected on 76 carbon-fiber probes manufactured as described in [8]. These probes were designed to be
implanted in humans and run during deep brain stimulation implantation surgery. The four analytes considered in
this paper are Dopamine (DA), Serotonin (5HT), Norepinephrine (NE) and pH. Typically, each analyte had its own
data set collected on each probe. The data sets for the neuromodulators (DA, 5-HT, and NE) were collected with 30
concentrations of the neuromodulator of interest ranging from 0 to 2500 nanomolar (nM) with a pH of around 7.4,
while the other neuromodulators had concentration of 0 nM. In addition, these data sets contained 5 of the mixture
solutions in which all three analytes had a value of 0, 840, or 1680 nM. The pH data set was collected with 11 pH
values in the range 7.0 to 7.8 and with the concentration of the three neuromodulators set to 0 nM as well as 5 mixture
solutions as described above. The order of data collection was randomized with concentration in the data set and in the
order of collection of the data sets.

This data collection approach was selected for practical and logistical reasons concerning the collection of the data. It
results in suboptimal data sets with very skewed label distributions. For a given neuromodulator the label is 0 nM for
approximately 70 percent of the samples and when its concentration is non-zero the other neuromodulators are zero for
approximately 70 percent of the samples.

The command voltage was applied as a triangle waveform with 90 milliseconds of a baseline potential of -0.6 V and a
slope of 400 V/s for 5 milliseconds followed by a slope of -400 V/s for 5 milliseconds. The electrical current data was
collected at 100,000 Hz such that 1000 samples aligned with the “active” part of the command voltage. These 1000
samples are the current trace or sweep and serve as the input to the models as shown in Figure 1. Data was collected in
a wet lab environment with care taken to minimize electrical noise from lab equipment, but for the most part, not in a
Faraday cage.

2.2 Data Preprocessing

For each probe a subset of sweeps contiguous in time was selected from each recording to minimize the amount of
sampled noise and maximize sweep stability. All current traces had the numerical first derivative taken as prior work had
found slight improvements over models trained on the raw current traces [8][10][11]. A shifted z-score normalization
function was applied to the concentration vector labels. The intention of this normalization was to equally weight the
error of the analytes despite the values falling in different ranges. The inverse of the shifted z-score function is applied
to the output of the model to get the final prediction in real space.

2.3 Model Architectures

The following models were run using Tensorflow [22] and Keras[23] implementations. If possible the implementation
from the source paper was used directly. The code for the models and the associated infrastructure can be found
at https://github.com/teptwomey/Deep_Learning_Architectures_for_FSCV. All models have the same final layer to
produce the final predictions. This final layer is a fully connected or dense layer with a softplus activation function.

2.3.1 InceptionTime

The InceptionTime network is an adaptation of the Inception image classification architectures adapted / tuned for the
problem of multivariate time series regression [13]. As implemented, the InceptionTime architecture has two ResNet
blocks [24] with three internal convolution blocks. These convolutional blocks consist of four parallel convolutional
layers with 32 filters and kernels of size 1, 10, 20, and 40. The output of parallel layers is stacked, batch normalized,
and fed to a RELU activation layer. The final layer of the convolutional block is bottleneck convolutional layer with a
32 filters of kernel size 1. Inside each ResNet block there is a bottleneck convolutional layer with 32 filters and a kernel
size of 1. The output of the bottle neck is fed to the connected convolution blocks and the output of those blocks is
added to the input of the ResNet Block and run through a RELU activation. After the sequential ResNet blocks there
is a global average pooling layer and the standard dense final layer. The InceptionTime paper uses a ensemble of 5
models, but we only used a single model.

2.3.2 Fully Convolutional Network (FCN)

The fully convolutional network architecture has blocks containing a convolutional layer, a batch normalization layer,
and a RELU activation layer. Following these blocks there is a global average pooling layer and a softmax layer. The
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final layer is a dense layer with four outputs and a soft-plus activation. Two versions of the FCN were trained. One
model with the hyperparameters from the reference [14] that has three blocks with filter sizes [128, 256, 128]. This
model is referred to as FCN_ref and has 265,220 parameters. The other model, referred to as FCN_wide, has the
same blocks but with additional filters at each level [162, 321, 162] such that the number of parameters was similar to
InceptionTime with 419,899.

2.3.3 SSVEPformer

The SSVEPformer [16] architecture was designed to classify Steady-State Visual Evoked Potential signals in a brain-
computer interface context. It was particularly tailored to the problem of inter-subject prediction in a similar vein to our
inter-probe prediction goal. It is composed of an initial layer that takes the discrete Fourier transform of the input and
concatenates the real and imaginary components. It then has a channel combination block with a 1D convolutional
layer to produce two channels from each channel of input, a layer normalization layer, a GELU activation layer and a
dropout layer with p = 0.5. That channel combination block is followed by two sub-encoders that each contain a CNN
module and a channel MLP module. The CNN module has a layer normalization layer, a 1D convolutional layer, a layer
normalization layer, a GELU activation layer, a dropout layer with p = 0.5, and a residual layer that adds the output of
the dropout layer and the input to the CNN module. The channel MLP module is composed of a layer normalization
layer, a dense layer, a GELU activation layer, a dropout layer with p = 0.5, and a residual layer that adds the output of
the dropout layer and the input to the CNN module. The output of the two sequential sub-encoders is feed to a MLP
head block. This MLP head block flattens its input, has a dropout layer, followed by a dense layer, a layer normalization
layer, GELU activation, and another dropout layer. The output of the MLP head is fed to the standard final dense layer
with softplus activation. As implemented the SSVEPformer has 428,588 parameters.

2.3.4 EEG-Transformer

We implemented a derivative of the EEG-Transformer model [15], which itself is a modification of the Vision
Transformer (ViT) [25] design. The EEG-Transformer was tuned for multi-channel time series classification and in
particular EEG signals, we adapted it for single channel input and regression. The first block of the implemented
transformer architecture uses a convolution layer to create the 1D equivalent of patches from the input time series. After
the convolution a class token and position embedding are added to the patch. The patch and its embeddings are then
given to three successive transformer blocks. Each transformer block has an attention sub-block, a residual connection,
layer normalization layer, a MLP block and a residual connection. The attention sub-block has a layer normalization
layer, a Multi-Head Attention layer, and a dropout layer. The MLP sub-block has a dense layer, a GELU activation
layer, a dropout layer, a dense layer and a final dropout layer. The output of the final transformer block goes through a
final layer normalization, a mean reduction is preformed and the standard dense final layer with softplus activation is
applied. As implemented the EEG-Transformer has 426,394 parameters.

2.3.5 Multi-Layer Perceptron (MLP)

A simple Multi-Level Perceptron (MLP) was created with three hidden layers of 312, 256, and 128 nodes respectively.
Each hidden layer had GELU activation. The final layer had 4 outputs and a softplus activation. No dropout or
regularization were implemented. The implemented MLP model has 425,540 parameters. Two versions of the MLP
were implemented, the MLP_wide to match the number of parameters from the InceptionTime model, and the MLP_big
model with an extra dense layer and 491,332 parameters. The larger MLP_big model was run after the MLP_wide
model had been tested to provide context for the unexpected performance.

2.4 Model Comparison

A probe based ten-fold cross validation experiment was performed to quantify and compare each architecture. The
76 probes were divided into 10 folds, 6 folds with 8 probes and 4 folds with 7 probes. One fold was held out as the
test fold and the other 9 folds were pooled to create a training and validation set. The training set consisted of roughly
90 percent of the unique probe-concentrations with the remainder being placed in the validation set. Once the model
was trained it was used to predict the held-out test set. That process was repeated such that each fold was held out and
predicted as a test set. In the end every probe had predictions run on its corresponding sweeps from a model that had
not seen that probe in training or validation. The data sets were created once for each fold and were used to train and
test all the model architectures. As the number of probes in each fold was not the same and there was some variation in
the amount of data collected on each probe, the size of the training and validation sets was not equal across folds.

All models were implemented in Keras [23] and trained using the ADAM optimizer [26], mean square error as the loss
function, a batch size of 64, and an initial learning rate of 0.001. The learning rate was halved following 5 consecutive
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epochs with no improvement in validation loss. Each model was trained for 35 epochs. Following each epoch, the
model was evaluated on the validation set and following the completion of training, the epoch with the best validation
loss was retained as the final version of the model to be used for prediction and testing. Each model was trained was
using a single NVIDIA Tesla V100 16GB GPU.

2.5 Response To Noise

We conducted voltammetry recordings via our standard procedure in proximity to two commercial electronic devices,
a magnetic stir plate and a bench top pH Meter. From the recordings were able to isolate the noise in the current
recordings induced from these devices. These noise sources were selected because of their qualitative similarity to noise
observed in in vivo environments. To validate that adding this isolated noise to existing current recordings was a valid
procedure, we tested if the noise was additive. To test if the noise was additive we averaged full 100 ms sweeps directly
before and directly after the noise source was turned on and subtracted the noise off average from the noise on average.
The difference sweep had noise spikes of uniform magnitude across all current levels of the noise free sweep. For both
noise sources, stir plate and pH meter, we isolated a 27-millisecond noise recording from the in vitro measurements.
We than scaled both noise recordings such that the peak current was equal to six noise levels (0.25, 0.5, 0.75, 1, 1.5, 2
nA). The 1 nA scaled version of each noise source is shown in figure 2.

Figure 2: Isolated induced noise scaled to 1 nA peak. Shaded rectangles represent the first and last of the windows
added to the sweeps. These window are generated via the moving window procedure.

The noise sources that we isolated are caused by the roughly 60 Hz power grid line frequency. This frequency is not
exactly fixed at 60 Hz and continuously fluctuates in response to grid conditions. That fluctuation results in an apparent
movement of the noise waveform across sequentially recorded current sweeps. To simulate this movement we sampled
a window moving across the scaled noise recording. This moving window was equal in length to the input of the model
(10 ms) and was shifted a single observation for each step. The window was moved 1667 steps to cover every position
of the 60 Hz waveform. For every position, the corresponding sampled window was added to a reference clean 10 ms
sweep. Figure 2 shows the first and last positions of the moving window.

To conserve computational resource we constrained our noise investigation to the trained models and test probes from
the first fold of our k-fold test. We then selected a single sweep from every unique neurotransmitter concentration from
all the probes in the this fold. These selected sweeps act as our base sweeps. Each base sweep had noise added it to and
predictions run. The noise was independently added from every combination of noise source, noise level, and from all
positions of the moving window. Thus for every base sweep, 20,000 (2 noise source x 6 noise levels x 1667 moving
window locations) base-plus-noise sweeps had predictions run. We note that the base sweeps had some existing level of
noise and with the addition of the artificial noise, some level of constructive and destructive interference could have
occurred. This interaction may create an apparent noise form that may be qualitatively different from the artificial noise.
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3 Results

3.1 Predictive Performance

The distribution of values for the root mean squared error (RMSE) and R-squared (R2) of the linear fit of true and
predicted concentration are shown in Figure 3 for DA, 5HT, and NE (pH is omitted). The corresponding mean and
standard deviation if these RMSE values are listed in Table 1. As shown, of all the models considered, the InceptionTime
architecture had the best median RMSE and R2 values across all three neurotransmitters considered. Surprisingly,
the MLP performed similarly in terms of the median and first quartile, but generally had a longer right tail. For the
MLP and FCN architectures, where multiple versions with different numbers of parameters were trained, there seems
to be little improvement with the larger models. Model performance on a given neurotransmitter is correlated with
performance on the other two neurotransmitters and the 5HT has the highest performance across the models. The
ordinality of the model performance results are unchanged when considering the RMSE or R2 metrics. The R2 results
do show a greater relative spread with more probes classified as outliers.

Figure 3: Root Mean Squared Error (RMSE) and Coefficient of Determination R2 Box Plots for each model. Circles
represent outliers falling more than 1.5 times the IQR away from the first or third quartile.

As prior work has had difficulty distinguishing between DA and NE, we examined if each architecture exhibits any
“confusion” between these analytes. Figure 4 demonstrates the InceptionTime model exhibiting low confusion. This can
be seen as the slope corresponding to the error in the NE as a function of the true NE concentration is much lower than
corresponding slope of the DA prediction. The FCN_wide model exhibits much more “confusion” with the equivalent
slopes much closer in magnitude. A similar analysis was performed for all architectures and their corresponding
slopes and R-squared values are listed in tables 3 and 2 respectively. The values in the tables come from running the
regressions on each test probe and then averaging over the probes whereas the plots combined the probes before running
a regression.
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Table 1: Mean And Standard Deviation of Predictions by Model. Bold text indicates lowest values for each column.

DA Mean DA STD 5HT Mean 5HT STD pH Mean pH STD NE Mean NE STD
inception 215.696 102.976 242.899 162.223 0.054 0.039 260.879 121.918
mlp_wide 276.755 208.394 272.596 246.500 0.049 0.046 336.086 259.398
mlp_big 278.978 205.778 277.395 250.241 0.052 0.059 321.480 229.730
eeg_transformer 319.458 121.367 344.235 218.203 0.073 0.054 384.339 169.795
ssvep_former 374.564 103.709 376.539 172.568 0.061 0.034 466.972 127.977
fcn_wide 521.156 116.325 448.591 274.379 0.084 0.039 584.825 142.119
fcn_ref 537.572 137.574 448.886 259.622 0.084 0.037 581.373 148.009

Figure 4: Cross Prediction between analytes for Inception (Top Row) and FCN_ref models (Bottom Row). For each
analyte there is a subplot that shows the relationship between the true and predicted values of that analyte, and error in
prediction for the other analytes.

Table 2: R2 Values of Cross Predictions

True Analyte DA 5HT NE
Pred Analyte DA 5HT NE DA 5HT NE DA 5HT NE
inception 0.921 0.018 0.023 0.018 0.892 0.020 0.015 0.020 0.882
mlp_wide 0.858 0.018 0.028 0.020 0.860 0.020 0.017 0.023 0.798
mlp_big 0.846 0.019 0.027 0.018 0.859 0.019 0.013 0.018 0.798
eeg_transformer 0.800 0.019 0.031 0.014 0.780 0.016 0.019 0.017 0.723
ssvep_former 0.760 0.034 0.094 0.020 0.764 0.036 0.045 0.044 0.631
fcn_ref 0.565 0.027 0.118 0.034 0.702 0.034 0.097 0.029 0.460
fcn_wide 0.579 0.023 0.116 0.034 0.710 0.034 0.091 0.028 0.465
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Table 3: Slope Values of Cross Predictions

True Analyte DA 5HT NE
Pred Analyte DA 5HT NE DA 5HT NE DA 5HT NE
inception 0.908 -0.103 -0.054 -0.095 0.892 -0.110 -0.058 -0.098 0.869
mlp_wide 0.878 -0.110 -0.039 -0.121 0.883 -0.113 -0.061 -0.120 0.824
mlp_big 0.867 -0.112 -0.046 -0.107 0.878 -0.097 -0.054 -0.087 0.834
eeg_transformer 0.758 -0.057 0.017 -0.065 0.762 -0.077 -0.011 -0.058 0.723
ssvep_former 0.621 -0.099 0.121 -0.072 0.605 -0.096 0.113 -0.101 0.477
fcn_ref 0.573 -0.089 0.203 -0.097 0.710 -0.062 0.187 -0.058 0.490
fcn_wide 0.583 -0.083 0.203 -0.095 0.719 -0.068 0.182 -0.063 0.500

3.2 Response To Noise

We consider the difference in the prediction between a base sweep with noise added and the prediction of the base
sweep. The distribution of this “noise induced deviation” for the DA predictions over all the probes and their sweeps for
the stir plate noise of magnitude 1 nA is shown in Figure 5. The InceptionTime and both version of the FCN networks
are most affected by this noise and seem to have more normal distributions compared to the fatter tailed distributions of
the other models.

Figure 5: Histogram comparing model’s noise response to stir plate noise that has been scaled to 1 nA. The distribution
shown is with all of the probes. A log y-scale is used to show separation between models. 1,637,976 sweeps were
predicted from each model and are included in the figure.

For all architectures, the magnitude of the “noise-induced-deviation” scales linearly with the magnitude of the noise
added in the range sampled. Figure 6 shows this scaling for the DA predictions with both noise sources. Between the
two noise sources the order of models in terms of noise effect is unchanged, but the scale differs in both relative and
absolute terms. For inception the slope is 2.25 times as great in the Stir Plate noise case, and for the MlP_wide model it
is only 1.5 times as great. The fully convolutional networks are consistently the most affected by either type of noise. A
table is provided in the appendix with slopes for all analytes (See tables 5 and 6. For a given model the noise response
is a function of the base sweep, the specifics of the noise waveform, and the phase of the noise in relation to the sweep.
Because of the interplay between those factors, the universe of plausible noise interactions is quite large and the sample
we tested may not be representative.
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Figure 6: Scaling of interquartile range (IQR) of noise induced deviation with magnitude of noise. Stir Plate noise
[Left] and pH Meter noise [Right]

3.3 Response To Deviant Probes

As shown in Figure 3 even models with low median RMSE values fail to accurately predict concentrations for some
probes. With these deviant probes, RMSE values can be greater than twice the median. For the inception, MLP_wide,
and eeg-transformer models we looked for metrics correlated with model performance to serve as an indicator of model
confidence. We considered the Mahalanobis and Fréchet distances between the internal model embedding. To create
the internal model embeddings the last layer of each model was removed and the values output from the second to last
layer were used. For the Mahalonobis distance, for each test probe the median of the distances from each sweep to the
training distribution was used. The Fréchet distance compared the distribution of the training set and the distribution
of all the sweeps from the test probe. The best distance depends on the model and analyte. Strong correlations exist
between median Mahalanobis distance of the inception model embedding and the RMSE performance for DA and and
NE. An example is shown in Figure 7 where the DA prediction RMSE had a a R2 value of 0.61. The Fréchet distance
was better for the MLP_wide and eeg_transformer models when using their own embeddings. As shown in Table 4, the
median Mahalnobis distance on the inception embedding had a stronger correlation with RMSE performance of the
model than when using the model’s own embedding for both the MLP_wide and eeg-transformer models.

rmse_model dist_model m_dist_DA m_dist_5HT m_dist_NE f_dist_DA f_dist_5HT f_dist_NE
inception inception 0.611 0.374 0.491 0.275 0.209 0.269
inception mlp_wide 0.475 0.408 0.414 0.133 0.214 0.095
inception eeg_transformer 0.008 0.012 0.035 0.212 0.432 0.273
mlp_wide inception 0.197 0.314 0.149 0.161 0.249 0.091
mlp_wide mlp_wide 0.195 0.358 0.205 0.635 0.564 0.558
mlp_wide eeg_transformer 0.000 0.000 0.000 0.099 0.439 0.101
eeg_transformer inception 0.538 0.302 0.466 0.158 0.160 0.194
eeg_transformer mlp_wide 0.234 0.310 0.350 0.012 0.114 0.094
eeg_transformer eeg_transformer 0.043 0.016 0.030 0.219 0.483 0.293

Table 4: R2 values between the root mean squared error (RMSE) performance of the model in rmse_model column and
the distance metric on the embeddings from the model in the dist_model column. The m_dist_DA column is for the R2

corresponding to the median Mahalobois Distance and the RMSE for the analyte DA. The column f_dist_NE is for
the R2 corresponding to the Fréchet distance and the RMSE for the analyte NE. The interior columns follow the same
convention.
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Figure 7: Median Mahalanobis Distance between training distribution and sweep in test probe vs Inception RMSE
results. Each dot represents a single analyte on a single probe.

4 Discussion

4.1 Predictive performance

The InceptionTime architecture performed the best in our test when considering both the absolute RMSE performance
and R2 results. Further the performance was more consistent than the second best architecture MLP with roughly half
the STD deviation in RMSE across probes. This performance is inline with expectations from prior work and because
the other models were constrained to it as a baseline. The MLP performed better than expected and warrants more
investigation. Perhaps the MLP architecture is better suited to this task than the time series or image classification tasks
used in prior comparisons. Because current evoked by the interaction with the neurotransmitter is fixed in its position in
the sweep the utility of convolutions may be less than when these structures are not fixed. Adding another layer to the
MLP had little effect on the accuracy suggesting a bottleneck elsewhere in the model or training. The FCN conversely
performed worse than suggested by prior work and both sizes of the model had nearly identical results.

4.2 Response to Noise

No prior work had examined the effect of noise in the DNNs applied to a FSCV task, however, it is well documented
that small noise additions can cause out-sized effects on DNNs in image classification tasks [20][21][27]. Of the better
performing models in terms of accuracy, the InceptionTime model is more responsive to the sample of electrical noise
we presented. Again the MLP performs surprising well in this regard. It is unclear why the larger version of the MLP
was effected by the noise. Using the numerical first derivative of the data may exacerbate the influence of the noise.
With the derivative relatively small noise spikes in relation to the magnitude of the sweep cause large changes in the
derivative. Those changes are especially important when the raw current sweep is flat and thus the proportional change
of the derivative is more significant than areas of the raw sweep is rapidly changing.

Given the effect of the noise on all of the top performing architectures, this work suggests effort should be allocated to
reducing this noise at the source or in prepossessing if possible. One possible option is to train multiple versions of a
given model and ensemble the results. The ensemble approach is recommended for the InceptionTime model but was
forgone in this analysis to conserve computational resources.

We note that the noise sources used (Shown in Figure 2) are not Gaussian, exhibit high auto correlation and seem to
have many component spikes. Additionally these noise sources are difficult to remove with naive methods as they
vary in time and their component frequencies overlap with the information carrying frequencies of the current sweep.
The universe of possible noises to arise in a in vivo environment is very large with the interaction of many possible
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electronic devices. Thus the noise examination presented here should be thought of as more illustrative of possible
noise interaction than representative of a model’s response to this universe of possible noises.

4.3 Response to Deviant Probes

The finding that the distance between model embeddings is correlated with performance is expected. This practice of
examining distances between model embeddings has been used for similar applications such as the Fréchet Inception
Distance [28], which is used to evaluate GANs. In that work the distance It is unclear why the median Mahanobis
distance and Fréchet distances are more appropriate for different models and different analytes. The second to last
layer of the InceptionTime network may be better suited to serve as embedding because it is of a lower dimensionality
than the corresponding layer in the MLP, and has a more evenly distributed embedding than the eeg-transformer. The
large differences in RMSE for a given test probe between analytes could be explain by the manner in which data
was collected. As most of the true variation in concentration of a given analyte is constrained to a single data set the
condition of the probe during that data set or specific noise conditions that existed during its collection may effect the
ability of model to predict sweeps from that data set.

5 Conclusion

We aimed to leverage the advancements of DNNs developed for other applications for the FSCV task. We investigated
the optimal model for specific desirable qualities of this task and particularly the out-of-probe case. Using a large test
with much more data than any previous work, we found that the InceptionTime architecture had the best performance
in terms of RMSE accuracy. Notably the InceptionTime architecture was also more susceptible to perturbation from
electrical noise than other models tested. We found that the a simple MLP had the second best accuracy, and was
less effected by noise. All models showed deteriorated performance for deviant probes that were far from the training
distribution. Additionally, we have shown that these deviant probes can be detected by finding distance to the training
distribution for model embeddings.
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Appendix

DA_STD DA_IQR 5HT_STD 5HT_IQR pH_STD pH_IQR NE_STD NE_IQR
inception 17.775 20.810 22.344 22.473 0.004 0.005 22.602 24.739
mlp_wide 10.903 5.043 13.786 7.637 0.002 0.000 15.400 6.812
mlp_big 11.309 3.662 14.872 5.273 0.002 0.000 14.835 3.993
eeg_transformer 20.773 10.418 22.818 7.819 0.004 0.001 28.420 10.559
ssvep_former 5.680 4.475 7.546 6.123 0.001 0.000 6.294 5.006
fcn_ref 38.233 48.552 29.738 36.604 0.004 0.005 36.110 47.302
fcn_wide 38.465 49.189 29.017 36.159 0.004 0.005 34.322 44.294

Table 5: Slope values for the line of best fit for relationship of noise-induced-deviation and magnitude of noise with pH
meter Noise. Values are reported for each analyte and both STD and IQR.

DA_STD DA_IQR 5HT_STD 5HT_IQR pH_STD pH_IQR NE_STD NE_IQR
inception 39.136 46.982 30.907 33.412 0.007 0.007 43.074 49.178
mlp_wide 23.400 7.473 12.808 7.004 0.003 0.001 27.031 9.702
mlp_big 20.507 4.617 16.857 4.654 0.003 0.000 24.949 5.978
eeg_transformer 33.622 18.988 36.359 12.449 0.007 0.002 45.396 23.704
ssvep_former 11.185 9.436 10.762 8.882 0.001 0.000 11.776 10.735
fcn_ref 53.967 70.578 44.540 55.295 0.006 0.008 57.940 76.587
fcn_wide 53.180 69.853 43.851 54.197 0.006 0.007 54.662 72.076

Table 6: Slope values for the line of best fit for relationship of noise-induced-deviation and magnitude of noise with stir
plate Noise. Values are reported for each analyte and both STD and IQR.
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