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ABSTRACT 

 

Existing research presents a working understanding of Borderline Personality Disorder (BPD) 

patients’ symptomatology, traits, and behavior in everyday life, but how they combine and utilize 

prior and likelihood (current sensory) information when making decisions remains unclear.      
Bayesian Decision Theory suggests that optimal decision-making behavior should combine and 

weigh both pieces of information according to their relative uncertainties, such that people rely 

more on the information with less uncertainty when making a decision. Though this optimal 

behavior has been observed in neuro-typical populations, prior literature suggests that certain 

neuro-atypical populations can deviate. Some characteristics of BPD patients, such as impulsive 

behavior and fast drastic changes in the overall perception of themselves and others, suggest that 

they may be over-relying on likelihood information and not sufficiently taking prior information 

into account. From a Bayesian perspective, this can be interpreted as having ‘weak’ priors which 

may lead to suboptimal decision-making. Here, we investigated this hypothesis by having BPD 

patients (n = 23) and healthy controls (n = 18) perform a coin-catching sensorimotor task with 

varying levels of prior and likelihood information uncertainty. Our results indicate that, contrary 

to our prediction, BPD patients were able to use prior information, and that their use of prior and 

likelihood information follows qualitatively Bayesian behavior. We found that BPD patients, at 

least in a lower-level and non-affective sensorimotor task, are still able to use both prior and 

likelihood information and react appropriately to the respective uncertainties. This suggests that 

any potential deficits in the use of prior information may not be widespread or only be apparent 

in affectively-charged interpersonal contexts.  
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Introduction 

 

Every day we are required to make decisions, ranging from trivial ones such as what to wear to 

work to more paramount ones such as which career path to take. A variety of information can be 

used to make such decisions - information on potential rewards and losses, time constraints, 

probabilities of different outcomes, etc. Bayesian Decision Theory offers a framework that 

focuses on the specific types of information people use: prior information and current sensory 

information. Prior information refers to the knowledge that we have gained from previous 

experiences in similar settings (1). Current sensory information, also known as likelihood 

information, refers to the current input that we are receiving at any given moment. The way we 

utilize prior and likelihood information depends on how reliable we think each type of 

information is (1). For example, suppose the outcomes of our previous decisions have not been 

consistent or have been difficult to predict. In this situation, since our prior information comes 

with more uncertainty, we may rely more on likelihood information to make our present 

decision. Likewise, if the likelihood information we are receiving seems to be more unreliable, 

we may tend to rely more on prior knowledge to guide our current decision-making behavior. 

Previous literature has generally found that those considered to be neuro-typical can make 

decisions in this Bayesian-optimal manner, by appropriately utilizing the information’s relative 

levels of uncertainty, as predicted by Bayesian Decision Theory (1–10). In addition, there is 

evidence in support of the independent encoding and distinct representation of these two types of 

information in the brain (11–13). There is also evidence that suggests that prior information can 

be learned independently from likelihood information in a way that is similar to the optimal 

manner as predicted by Bayesian statistics (14). This provides a basis in support of Bayesian-like 

information usage in decision-making for neuro-typical adults. However, this may not be the 

case for non-neurotypical populations including Parkinson’s Disease and Autism Spectrum 

Disorder patients (15–20). Similarly, little is known about how people with personality disorders, 

namely Borderline Personality Disorder (BPD), combine prior and likelihood information.  

 

BPD, found in approximately 1.7% of the general population, is characterized by heightened 

sensitivity to perceived interpersonal slights, unstable perception of self and others, volatile 

moods, and impulsive behavior. These characteristics typically lend themselves to maladaptive 

outcomes (21,22). For example, a minor slight such as showing up late to a meeting once or 

making a one-off blunt remark may drastically change a BPD patient’s opinion of a person they 

have known for years. From a Bayesian decision-making standpoint, this could be interpreted as 

relying more on likelihoods and less on priors, and/or an over-updating of priors. In general, the 

unstable perception about both self and others, one of the hallmarks of BPD, could be interpreted 

as an improper reliance on priors, or even an incapacity to build them in the first place. This may 

lead to a number of negative outcomes in everyday life for those with BPD, ranging from trivial 

ones such as losing a networking opportunity to more serious ones such as losing important 

relationships both at work and at home.  

 

Existing research shows some evidence for improper prior formation or updating in social 

settings in BDP patients. For example, some studies suggest that participants with BPD display 

more malevolent representations of others’ emotions, intentions, and behavior (23,24). BPD 

patients have also been found to trust less and have significantly lower expectations for the 

payoff in a two-person trust game (25). In addition, when asked to rate faces they rated them as 



less approachable and less trustworthy than how controls rated them (26). A recent study by 

Siegel and colleagues found that the belief (prior) updating may differ between BPD patients and 

controls, and that this difference may depend on the perceived character of the person/agent they 

are judging (27). In their study, participants saw the decisions of two agents (a “good” and a 

“bad” agent) that were willing (or not) to harm others for money and had to periodically rate 

their subjective impressions of both the morality of the observed agent as well as how certain 

they were about it. They found that, although there were no significant differences in overall 

judgments of character, untreated BPD patients were more certain about their negative beliefs of 

the “bad” agent and, furthermore, updated these beliefs less. The opposite happened with the 

“good” agent, which seemed to update their beliefs faster than controls, with no significant 

difference in the certainty of those beliefs. Altogether, these studies suggest that BPD patients 

have improper (e.g. more negative) priors of others, and that they may update them differently. 

 

The significant role and impact of BPD characteristics can be seen clearly within social settings, 

but it is not as well understood within non-social settings. In a delay-discounting task, BPD 

patients were found to have a greater rate of discounting than control participants without BPD. 

This was associated with overall impulsiveness and non-planning impulsiveness. These results 

suggest that BPD may be characterized by a bias towards immediate rewards (28). Those with 

BPD have also been shown to have impaired decision-making abilities. Relative to those without 

BPD, patients with BPD were found to make less advantageous choices in the Iowa Gambling 

Task (IGT)(29). BPD patients were also observed to make riskier choices in a modified version 

of the IGT. Feedback-related negativity (FRN) data collected from the IGT indicated that those 

with BPD did not distinguish between positive and negative feedback. FRN measures also 

indicated greater impulsivity and risk-taking behavior in the BPD patients (30,31). Overall, BPD 

patients have been shown to be making impulsive choices with a bias towards more immediate 

gratification (32). Similarly, BPD patients’ struggled to appropriately employ feedback from 

prior experiences when conducting the Game of Dice Task (33). Altogether, these findings 

suggest an impairment in the ability to appropriately weight different types of information – both 

in interpersonal but perhaps also in non-interpersonal decision-making scenarios. However, it is 

still unclear if BPD patients can appropriately learn and combine prior and likelihood 

information, particularly in a non-social decision-making scenario. 

 

Here, we aim to further our understanding of BPD patients’ decision-making behavior under a 

more general, non-social setting. In particular, we aim to assess BPD patients’ use of and 

reliance on prior and likelihood information, a key lower-level building block of decision-

making processes, within a generalized sensorimotor decision-making task in which the 

uncertainty of prior and likelihood information is modulated.  

  



Materials & Methods 

 

Participants 

 

Eighteen BPD patients (15 women) and 23 neuro-typical adults (8 women) were recruited as 

participants. These participants were part of a larger study investigating decision-making in 

personality disorders (approved by the Research Ethics Committee for Wales). BPD patient 

referrals were obtained from psychiatrists or (trainee) clinical psychologists across London NHS 

Mental Health. The BPD diagnosis of each patient was confirmed through the Structured Clinical 

Interview for DSM-IV Axis II Diagnoses (34). Neuro-typical adults were recruited through 

online advertising. Participant exclusion criteria were diagnosis of a psychotic illness or recent 

psychotic episode, as well as any current substance use disorders or addictions from which they 

were not able to abstain on experiment days. History of neurological disorder(s) or traumatic 

brain injury also served as exclusion criteria. For controls specifically, existence of past or 

present mental disorder or personality disorder served as exclusion criteria. All participants were 

between 18 and 60 years of age and received a compensation of £10/hour for their time. Travel 

expenses were also reimbursed. Written informed consent was provided by all participants.  

 

 

Procedure/Task 

 

To understand how the uncertainty of prior and likelihood information may influence decision-

making, we employed a coin-catching sensorimotor task that modulated the uncertainty of both 

prior and likelihood information (13,20,35,36). We introduced the coin-catching task to the 

participants with a backstory involving an unknown person throwing a coin and aiming for the 

center of the pond. The task consisted of 600 trials, with 150 trials in each of the 4 blocks. 

However, for 3 of the 18 BPD patients, the number of trials were reduced to 480, with 120 trials 

in each of the 4 blocks, in order to accommodate for restlessness during the task. Following 

analyses, we found no difference in results between those who conducted 480 trials and those 

who conducted 600 trials. Participants were told that, during each block, a thrower throws a coin 

into the pond, and that the thrower changes between blocks (Figure 1). The coin’s location in the 

pond is not shown, and participants were instructed to estimate this unknown location using the 

net. Every trial consisted of a visual display of the “pond”, the splashes made by the coin thrown 

in, as well as the net. The pond spanned the entirety of a computer screen and was represented by 

a plain grey background with a random spread of several dark grey dots. The splashes were 

represented by a spread of 5 blue dots. The net was represented by a randomly placed blue bar 

spanning the vertical length of the display. Hence, only the x-axis was relevant for prediction of 

the coin’s location. Participants were instructed to use the left and right arrow keys to move the 

net and to use the enter key to indicate where they think the coin may have landed (Figure 1A). 

Once they had indicated their placement of the net, the coin, represented by a yellow dot, was 

shown. They were also shown text indicating the current trial and their score, which is the 

number of trials that they have accurately estimated the location of the coin thus far (Figure 1B). 

This task was not timed. Unknown to the participants, we imposed two levels of uncertainty on 

both the prior and likelihood information such that we had 4 conditions (Figure 1C).  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: (A) When a trial begins, the display contains the net (net’s initial placement is random), spread of several 

gray dots throughout the display, and spread of the 5 blue splashes. (B) The conclusion of a trial displays the true 

location of the coin along with the overall score in the task thus far and the number of the current trial. The red text 

displays the current score and the current trial number. (C) The 4 conditions are displayed above in terms of the 

level of uncertainty in the prior and likelihood information. Narrow distributions are associated with lower 

variance/more reliability, and wide distributions are associated with larger variance/more uncertainty. The 4 

conditions and their abbreviations are: NPNL (narrow prior and likelihood); NPWL (narrow prior, wide likelihood); 

WPNL (wide prior, narrow likelihood), and WPWL (wide prior and likelihood). 

 

The levels of uncertainty were experimentally defined as the variances of the prior and likelihood 

information. For each block, the coin position was taken from a Gaussian distribution (the prior 

distribution) where the mean was the center of the screen (0.5 in screen coordinates) and the 

variance was either narrow (σ𝑁𝑃2 = 0.0252) or wide (𝜎𝑊𝑃2 = 0.0752). Each prior condition 

was repeated two times (alternating), for a total of 4 blocks. While the transition between each 

block of the experiment represented a change in the variance of the prior information, the 

changes in the spread of the splashes along the x-axis from trial to trial explicitly displayed the 

changes in the variance of the likelihood information. The splashes that participants could see at 

each trial represent the likelihood and were obtained from a second Gaussian distribution where 

the mean was the coin position at that trial, and the variance, as depicted by the spread of the 

splashes, was either narrow (σ𝑁𝐿2 = 0.0252 ∗ 5) or wide (𝜎𝑊𝐿2 = 0.0752 ∗ 5). The spread of 

the splashes along the x-axis was counterbalanced with the spread along the y-axis. The 

likelihood variance varied pseudo-randomly across trials within a block, so that half of the trials 

used the narrow likelihood and half used the wide likelihood, but they could appear in any order. 

This way, the likelihood could not be predicted.  

 

After the completion of the task, participants were asked to complete two more tasks designed to 

control for their performance. The first control task, which consisted of 100 trials, instructed 

participants to place the net on the visible coin. This task served as a way to measure 
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performance to exclude those that did not complete the task as instructed (due to either a motoric 

or visual deficit, or inattention). The second control task, which also consisted of 100 trials, 

instructed participants to place the net at the mean location along the x-axis, or centroid, of the 

splashes. This task was used to assess how well participants were able to find the centroid (as the 

variance in likelihood changed). This control task’s data was also used to calculate participants’ 

subjective likelihood variances, which may differ from the experimentally imposed likelihood 

variances (see Supplementary Methods).  

 

All participants completed this coin-catching task on a computer. Afterwards, participants 

completed a Borderline Personality Feature (PAI-BOR) self-report questionnaire (37) and the 

Barratt Impulsivity (BIS) questionnaire (38) in the convenience of their homes.  

 

 

Statistical Analysis 

See Supplementary Methods for details. 

 

 

  



Results 
 

In order to quantify the use of priors and likelihoods, we utilized a linear regression model which 

used the centroid locations of the splashes and the locations of the placed net in the main task for 

each participant. The slope of the resulting simple linear regression model is called the sensory 

weight. We can interpret the value of the sensory weight as representing the level of reliance on 

likelihood information. A sensory weight of 1 would mean that the participant placed the net on 

the location of the centroid of the splashes on every trial, indicating that the participant relied 

completely on likelihood information throughout the task, regardless of the uncertainty of the 

information (solid line, Figure 2). On the other hand, a sensory weight of 0 would mean that the 

participant placed the net randomly in relation to the location of the centroid throughout the task 

(dashed line, Figure 2). This would indicate no reliance on likelihood information. If we assume 

the only information considered to make the decisions were priors and likelihoods, this could 

indicate complete reliance on prior information. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Sensory weight, for one example BPD patient participant. The x-axis indicates the center of splashes and 

the y-axis indicates the location of net placement of each trial. The orange data points represent trials from all 4 

conditions of the coin-catching task for the example BPD patient participant, while the solid, orange line indicates 

the linear regression model for their data. The dashed line indicates an example of a sensory weight of 0. The solid, 

black line indicates an example of a sensory weight of 1. Both the x- and y-axis are displayed in screen units 

(representing the horizontal axis of the visual display).  

 

 

BPD patients were able to detect and respond to changes in uncertainty in priors and 

likelihoods 

 

To assess BPD patients’ ability to detect and respond to changes in the levels of uncertainty in 

both priors and likelihoods, we compared the difference in sensory weights between narrow 
uncertainty trials and wide uncertainty trials. To assess the main effect of the level of prior 

uncertainty, we gathered the sensory weights for the narrow prior, narrow likelihood (NPNL) 

and narrow prior, wide likelihood (NPWL) conditions and averaged them such that each patient 

had one average sensory weight for the NP condition. This procedure was followed to arrive at 

average sensory weights per patient within the WP condition as well. We found that the averaged 

sensory weights from the narrow prior uncertainty condition were significantly smaller relative 

to the ones from the wide prior uncertainty conditions (t(22) = -3.259, p = 3.597-03, paired t-

  

2 



test; MNP = 0.556, SDNP = 0.058 vs. MWP = 0.688, SDWP = 0.044). Following a similar procedure, 

we found that a main effect also exists for the level of uncertainty in likelihood information 

(t(22) = 8.953, p < .001), where sensory weights from the narrow likelihood conditions were 

significantly higher compared with the wide (more uncertain) likelihood conditions (MNL = 

0.706, SDNL = 0.045 vs. MWL = 0.538, SDWL = 0.052). In other words, BPD patients were 

sensitive to changes in both prior and likelihood information, which is reflected through 

significantly different sensory weight means between different uncertainty levels (Figure 3). 

Moreover, the difference followed what would be expected by Bayesian statistics: BPD patients 

relied more on likelihood information (i.e. had greater sensory weights) when the prior 

information was more uncertain (wide) or when the likelihood information was more reliable 

(see Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Significant main effects of uncertainty level were found for both (A) priors and (B) likelihoods in BPD 

patients, as reflected by average sensory weights and SEM. Sensory weights of patients were gathered according to 

level (narrow or wide) of uncertainty. Mean of sensory weights was 0.556 ± 0.058 when the uncertainty in prior 

information was narrow, and 0.688 ± 0.044 when the uncertainty in prior information was wide. Mean of sensory 

weights was 0.706 ± 0.045 when the uncertainty in likelihood information was narrow and 0.538 ± 0.052 when 

the uncertainty in likelihood information was wide. (See Supplementary Information for additional statistical 

results.)  

 

 

Relative usage and reliance on prior and likelihood information was not significantly 

different between BPD patients and controls 
 

To understand how BPD patients and controls used prior and likelihood information and their 

respective uncertainties, we used a similar procedure as above to gather and average the 

appropriate sensory weights according to the uncertainty levels. First, we found that control 

participants also showed a main effect of prior and likelihood uncertainty (See Supplementary 

Information). Then, we looked at whether differences in sensory weights existed between BPD 

patients and controls (using 4 sensory weights per participant, corresponding to the 4 conditions; 

see Figure 1C and Figure 4). Through a repeated-measures analysis of variance (ANOVA) with 

prior, likelihood, and population (i.e., BPD patients or controls) as factors, we found a main 

effect for the level of uncertainty in the prior information (F(1, 39) = 29.856, p < .001), and a 

main effect for the level of uncertainty in the likelihood information (F(1, 39) = 132.080, p < 

.001). In other words, when patients and controls are grouped together, there still exists a main 
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effect for the uncertainty level of prior information and for likelihood information for all 

participants as a whole. We also found an interaction effect between uncertainty levels of prior 

and likelihood information (F(1, 39) = 6.978, p = .012). However, we found no main effect for 

population (F(1, 39) = 0.010, p = .921). This indicates that, regardless of condition, sensory 

weights did not significantly differ between BPD patients and controls. There was also no 

interaction between uncertainty levels of prior and population (F(1, 39) = 0.403, p = .529), or 

between uncertainty levels of likelihood and population (F(1, 39) = 0.291, p = .593). Last but not 

least, there were no significant interaction effects between uncertainty levels of prior, uncertainty 

levels of likelihood, and population (F(1, 39) = 3.367, p = .074; see additional analyses in SI). 

These results indicate that both BPD patients and controls were able to detect changes in prior 

and likelihood uncertainty and respond accordingly, with no significant differences between the 

groups.  

 

 

BPD patients and Controls behaved qualitatively Bayesian-like, but not quantitatively 

 

     We assessed whether BPD patients’ behavior (and control participants’ behavior) matched 

what is predicted by Bayesian Decision Theory. Succinctly put, this theory predicts that the 

information that has a lower level of uncertainty would be relied on more heavily than the 

information that has a greater level of uncertainty. Specifically, for this task, it predicted that the 

participants’ sensory weights would be greater in the condition with narrow uncertainty in the 

likelihood information and wide prior uncertainty (this is our WPNL condition). Conversely, it 

predicted a participants’ sensory weights would be smaller in the NPWL condition (see Figure 

1C). In general, it predicts that participants would have higher sensory weights whenever the 

likelihood information is more reliable (less uncertain) and/or when the prior is more uncertain. 

Qualitatively, this is exactly what we observe (see Figure 4; see also Figure 3). To see if this 

happened not only at the group level but at the individual level, we used Bayes’ rule to arrive at 

Bayesian estimations of the locations of the coin per trial and found that overall, both BPD 

patients’ and controls’ estimated coin locations significantly correlated with the Bayesian 

estimated locations of the coins (all BPD patients: rs > 0.375, ps < .001; all Controls: rs > 0.395, 

ps < .001; see SI). These results provided evidence for Bayesian-like behavior, for both BPD 

patients and controls, in deciding the locations of the coin throughout the task. 

 

Next, we wanted to understand how participant behavior compared quantitatively to behavior as 

predicted by Bayesian Decision Theory. We found that BPD patients’ sensory weights were 

significantly different from Bayesian-optimal sensory weights obtained using the 

experimentally-imposed variances (t(22) = 2.561, p = .018, one-sample t-test). Similarly, 

controls’ sensory weights were also found to be significantly different from Bayesian-optimal 

sensory weights (t(17) = 2.567, p = .020, see SI for additional details and analyses). From these 

results, we could see that, quantitatively, both BPD patients’ and controls’ sensory weights were 

significantly different from Bayesian-optimal sensory weights. BPD patients’ sensory weights 

were not significantly different from controls’ sensory weights (t(39) = 0.099, p = .921) and thus 

likewise neither were they further from the optimal. These results indicate that both BPD 

patients’ and control participants’ use of prior and likelihood information differed quantitatively 

from what Bayesian-optimal behavior predicts, but that BPD patients were not further from the 

optimal compared to control participants.  



 

These results were obtained using the experimentally-imposed variances, but these values may 

not necessarily be representative of participants’ subjective experience of the uncertainty. 

Instead, we can calculate participants’ subjective likelihood uncertainties using the data from the 

second control task (see Methods, SI, and Supp. Fig. 1 for details). We found that BPD patients’ 

sensory weights were not significantly different from Bayesian-optimal sensory weights as 

calculated using subjective likelihood variances (t(22) = -0.745, p = .464). In other words, we did 

not find evidence of non-Bayesian behavior in BPD patients when the Bayesian-predicted 

sensory weights were calculated using subjective values for the likelihood variance. However, 

this may depend on the condition, with some obtained sensory weighs being above and others 

below the Bayesian optimal values (see Figure 4 and Supplementary Results). Similar results 

were found for controls (t(17) = -2.085, p = .052). The differences between participant sensory 

weights and the Bayesian-predicted sensory weights, as calculated using subjective likelihood 

variances, were not significantly different between BPD patients and controls (t(39) = 0.793, p = 

.433, see also SI).  These results indicate that BPD patients’ behavior may not necessarily be 

non-Bayesian when analyzed in a subjective context (although this depends on the condition), 

and is not further from the optimal compared to controls.  

 

We also looked at BPD patients’ task performance in comparison to responses to both the 

Borderline Personality Feature self-report questionnaire (PAI-BOR) and the Barratt Impulsivity 

questionnaire (BIS). We found no significant correlation between task performance and 

questionnaire scores (see SI). 

 

 

 

 

 



 
Figure 4: This figure displays the average sensory weights (and associated SEM) per condition and per population. 

The x-axis displays the conditions (see Figure 1C). The y-axis displays the range of sensory weights. The data 

depicted are grouped according to population type: BPD (patients), Control (participants), Bayesian-predicted 

sensory weights based on experimentally-imposed variances labeled as BayesTheoretical, and Bayesian-predicted 

sensory weights based on subjective likelihood variances labeled as BayesSubjectiveBPD and 

BayesSubjectiveControl. 

 

 

  



Discussion 

 

In this study, we aimed to understand how those with BPD use prior and likelihood information 

to make decisions. Given certain typical characteristics of BPD such as impulsiveness, rapid 

changes in the perception of themselves and others, as well as sudden changes in mood and 

behavior, we hypothesized that this could stem from an overall low reliance in prior information 

and potential inability to use prior information appropriately, which may then translate into a 

greater reliance on likelihood information than prior information when making decisions. We 

found no significant difference in the weight given to current vs. prior information (sensory 

weights) between BPD patients and controls. We also found that BPD patients behaved in a 

manner qualitatively matching optimal behavior as predicted by Bayesian Decision Theory. 

Within the context of this particular sensori-motor paradigm, we found evidence in support of 

BPD patients’ ability to distinguish, learn, and appropriately use both prior and likelihood 

information when making sensorimotor decisions.  

 

We also hypothesized that those with BPD would not make decisions in a Bayesian-optimal 

manner. We found quantitative evidence in support of this hypothesis, but qualitatively, BPD 

patients’ decision-making behavior was on par with Bayesian predictions. However, when we 

used the subjective variances instead of the experimentally-imposed variances, we found that 

they were not significantly different from optimal. In addition, BPD patients were not further 

from the optimal compared with controls. Thus, BPD patients’ behavior could be at least 

qualitatively successfully captured by a Bayesian framework.  

 

Overall, these findings suggest that in particular types of decision-making, such as within a 

purely sensorimotor decision-making paradigm, BPD patients’ decision-making ability may not 

be impaired. Our results in support of qualitatively, but perhaps not quantitatively, Bayesian-like 

decision-making behavior in both BPD patients and neuro-typical adults are similar to prior 

studies’ findings in neuro-typical adults (39,40). 

 

However, the BPD results contrasted with results obtained in two recent studies (41,42). In these 

studies, BPD patients were presented with both a social and a nonsocial cue and were found to 

weigh sensory information differently from healthy controls (41,42). Namely, Fineberg and 

colleagues found that both social and nonsocial cues were more significantly weighted by BPD 

patients than the controls (41). This may suggest that those with BPD are more attentive to 

current sensory cues, or in other words, likelihood information. However, they also found 

blunted learning when there was higher reward volatility, in both social and non-social contexts, 

which would suggest that when there is higher reward volatility there is lower reliance on current 

information. Interestingly, while Henco et al. also found that BPD patients had slower learning 

rates from both social and non-social information, they found that BPD patients instead had an 

exaggerated sensitivity to changes in environmental volatility (42). In addition, both papers 

found that BPD patients responded more to social cues, and the differences that they found in 

learning rates between BPD patients and controls were more pronounced for the social cues 

(41,42). We believe that one of the main reasons for a difference among our results and theirs is 

the existence (or not) of a social component in the task. Due to the personal and social nature of 

this disorder, it is possible that decision-making paradigms involving a social component may 



aid in eliciting key characteristics of BPD and significantly affect BPD patients’ ability to make 

decisions even in the non-social portions of the task. Our study is an important control 

experiment that provides evidence that differences observed by prior studies are not due to a 

generalized dysfunction in information processing but rather may be content related.  

 

Our findings may have been limited by a small sample size. Future studies would benefit from 

replication using a larger pool of participants. In addition, these findings may not generalize to 

broader decision-making situations which may involve social components, particularly so in 

more affectively charged interpersonal situations where mentalizing one’s counterpart requires 

emotion regulation and understanding of or inference of intentionality (24,43,44). A future 

direction of our current study could involve modifying the task to include different degrees of 

such social components, and see if and how behavior changes. We predict suboptimal use of 

prior information in these social contexts, especially if the social information comes from 

someone emotionally close to them. Nevertheless, our results indicate that any potential deficits 

in appropriately using priors in social contexts do not stem from a generalized inability to learn 

and use priors.  

 

Our study provides evidence to support that BPD patients are able to learn both prior and 

likelihood information and their respective uncertainties and use it appropriately. Thus, our 

results challenge the notion that BPD patients have aberrant learning irrespective of the domain 

(42), and indicate that, at least within the context of sensorimotor decision-making, BPD patients 

are able to learn and make decisions appropriately in a way that is predicted by Bayesian 

Decision Theory. 
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