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Abstract 
Machine learning advances in electrochemical detection have recently produced sub-
second and concurrent detection of dopamine and serotonin during perception and action 
tasks in conscious humans.  Here, we present a new machine learning approach to sub-
second, concurrent separation of dopamine, norepinephrine, and serotonin.  The method 
exploits a low amplitude burst protocol for the controlled voltage waveform and we 
demonstrate its efficacy by showing how it separates dopamine-induced signals from 
norepinephrine induced signals.  Previous efforts to deploy electrochemical detection of 
dopamine in vivo have not separated the dopamine-dependent signal from a 
norepinephrine-dependent signal.  Consequently, this new method can provide new 
insights into concurrent signaling by these two important neuromodulators.  

Introduction 
There exist many techniques to probe physiological changes in the brain in response to 
cognitive demands, including functional magnetic resonance imaging (Ogawa & Lee, 
1990), electroencephalography (Behrens et al., 1994) and magnetoencephalography 
(Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993).  Nevertheless, there 
persists a gap in the ability to track sub-second chemical changes in human brain related 
to synaptic transmission (Kandel & Siegelbaum, 1995). Techniques such as positron 
emission tomography (Wrenn, Good, & Handler, 1951) and single emission computed 
tomography (Takeshita et al., 1992) map the activity of neurotransmitter receptors; 
however, their limited temporal resolution makes them unsuitable for the study of sub-
second neural events (Dayan, 2012). Recent work adapting fast scan cyclic voltammetry 
(FSCV), (Kissinger, Hart, & Adams, 1973; Kuhr & Wightman, 1986; Stamford, Kruk, & 
Millar, 1986) from animal experiments to clinical settings in humans has opened a new 
field of invasive real-time neurochemistry (Bang et al., 2020; Kishida et al., 2016; 
Montague & Kishida, 2018; Moran et al., 2018). 
In FSCV studies, experimenters implant an electrode into the cell cultures of brain tissue 
(Adams, Puchades, & Ewing, 2008), as well as brains of a living animal, including rodents 
(Rebec, 1998), primates (Schluter, Mitz, Cheer, & Averbeck, 2014), and zebrafish (Jones, 
McCutcheon, Young, & Norton, 2015). A voltage of a specified waveform is applied to the 
electrode, producing electrical current responses on the surface of the electrode. The 
current traces can then be used to make inferences about the identity and relative 
concentration of oxidizable neurotransmitters like dopamine, serotonin, and so on 
(Kissinger & Heineman, 1983). In the case of dopamine, a voltage sweep produces 
oxidation and reduction peaks at characteristic voltage potentials which can be calibrated 
ex vivo to known changes in concentration (Heien, Johnson, & Wightman, 2004). Such 
an invasive method does not translate readily into humans because the opportunity to 
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pre-calibrate the electrode is not available. However, surgeries which involve electrode 
implantation, such as deep brain stimulation (DBS) implantation surgery, provide an 
exciting opportunity to obtain electrochemical recordings from conscious patients 
performing a task (Bang et al., 2020; Kishida et al., 2016; Moran et al., 2018). 
The process of adapting FSCV methods for human use has revealed that catecholamines 
like dopamine show small but significant oxidation through a wide range of applied 
voltages (Kishida et al., 2011; 2016; Moran et al., 2018; Bang et al., 2020 shows datasets 
used for training models). One change in approach has been to use all the current time-
series data throughout the duty cycle of an applied voltage waveform, and then deploy 
various machine learning methods with proper cross-validation to produce excellent 
concentration prediction models for dopamine and serotonin (Moran et al., 2018; Bang et 
al., 2020). To date, these models have employed elastic net (EN)-penalized regression, 
a common machine learning algorithm (Friedman, Hastie, & Tibshirani, 2010; Zou & 
Hastie, 2005).  
Here, we develop and validate a voltage waveform at a significantly reduced voltage 
range relative to standard FSCV protocols. The voltage range used by older methods to 
measure dopamine spans -0.6 V to 1.4 V, in order to capture oxidation and reduction 
peaks. Devising a low amplitude sensing method that remains sensitive to changes in 
dopamine concentration would remove the restriction on potential range – a significant 
advance when considering its use in human subjects. The low amplitude sensing method 
must also identify multiple (possibly confounding) neurotransmitters, as would be the case 
in-vivo. This includes detecting neuromodulators with similar electrochemical responses, 
such as the catecholamines dopamine and norepinephrine. Lastly, the low amplitude 
method must work on data gathered on probes not used during the model generating 
process, as would be the case for probes used in subjects.  That is, we seek models that 
generalize both out-of-concentration and out-of-probe.  
The first experiment explored two different voltage waveforms at one quarter of the range 
used in fast scan cyclic voltammetry (FSCV) protocols (Rodeberg, Sandberg, Johnson, 
Phillips, & Wightman, 2017). Traditional FSCV makes use of characteristic oxidation 
peaks to calibrate readings and estimate changes in neurotransmitter concentration 
(Baur, Kristensen, May, Wiedemann, & Wightman, 1988). The first voltage waveform 
used a triangular pulse, with a shape similar to FSCV (Howell, Kuhr, Ensman, & Mark 
Wightman, 1986), sweeps but limited to -0.15 to 0.35 volts. The second used a randomly 
ordered voltage waveform also limited to -0.15 to 0.35 volts (this is analogous to waveform 
discussed in Montague et al., 2019). The second experiment demonstrates the capacity 
of this low amplitude technique to separate signals due to dopamine from those due to 
norepinephrine. 

Results 
Comparing low amplitude forcing functions 
Recordings were obtained on dopamine solutions ranging from 0-2.7 µM in steps of 50 
nM with added Gaussian jitter, and within-probe models outlined in the methods section. 
The voltage waveforms used were the modified low amplitude FSCV in Fig. 1A and low 
amplitude random burst in Fig. 1B, with an average action potential plotted in red for 
scale. These voltage waveforms were delivered in voltage clamp mode and the current 
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time series were recorded.  We used the time derivative of the current time series to 
predict the known dopamine concentration – this is a standard supervised learning 
problem.  The ‘reported oxidation potential for dopamine’ is around +0.65 volts so this 
triangular waveform peak is well shy of that reported potential. Nevertheless, there is 
dopamine oxidation and reduction throughout the waveform, and we pursued the 
hypothesis that many machine learning methods could pick out predictive information We 
used the elastic net algorithm (Zhou and Hastie, 2004) to build a cross-validated 
concentration prediction model (Kishida et al., 2016; Moran et al., 2018; Bang et al., 
2020). Within-probe models generated predictions which are plotted in Fig. 1C for the low 
amplitude FSCV and Fig. 1D for the low amplitude random burst waveforms. The 
dopamine predictions in blue are plotted over the true values in black found in the top 
panel. The dopamine predictions show a closer fit and reduced noise in prediction for the 
low amplitude random burst. These findings are quantified in the lower left panel for 
RMSE and lower right panel showing SNR. The values are plotted for each concentration, 
along with the average as a dotted line. Overall, the low amplitude random burst sensing 
demonstrates lower RMSE and higher SNR than the low amplitude sweep.  One known 
contributing adulterant to a good model in this context is autocorrelation, which is largely 
removed by the randomized sequence of voltages (Montague et al., 2019). 
 

 
Figure 1. Low amplitude linear sweep versus random burst. (A) A low amplitude version of 
the standard sweep protocol, with action potential plotted in red for scale. (B) The LABS forcing 
function, with action potential plotted in red for scale. (C) Dopamine predictions using low 
amplitude sweep plotted over known values, with the RMSE in the lower left panel and the SNR 
in the lower right panel. (D) Dopamine predictions using low amplitude random burst sensing 
plotted over known values, with the RMSE in the lower left panel and the SNR in the lower right 
panel. 
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Distinguishing dopamine and norepinephrine 
Using the random burst voltage protocol, we sought to separate dopamine and 
norepinephrine predictions.  In all previous work estimating dopamine using FSCV, it has 
not been possible to accomplish such a separation because of their extremely similar 
current profile near the reported oxidation points for both. EN-penalized linear regression 
models were generated using the within-probe modeling procedure outlined in to calibrate 
both dopamine and norepinephrine concentrations. The voltage waveform for FSCV 
plotted in Fig. 2A shows how the function LABS waveform spans a voltage potential range 
well below the oxidation peak for dopamine. In Figs. 2B and 2C, the results of EN-
penalized regression models are plotted against the known values for both methods, 
showing a strong direct relationship with a slope greater than 0.99. The correlation 
between the known and predicted concentrations, indicated by correlation coefficients R2 
greater than 0.99 for both neurotransmitters. 

 
Figure 2. Distinguishing dopamine and norepinephrine. (A) LABS forcing function relative to 
oxidation peak region of dopamine and norepinephrine. (B) Within-probe EN-penalized model 
predictions for dopamine versus known concentrations. The line of best fit is reported in the 
legend, and the accuracy is reported in terms of R2. (C) Within-probe EN-penalized model 
predictions for norepinephrine versus known concentrations. The line of best fit is reported in the 
legend, and the accuracy is reported in terms of R2. 

 
Out-of-probe predictions 
Low amplitude random burst sensing data were acquired on ten probes using randomized 
mixtures of dopamine and serotonin from 0-2.7 µM in steps of 50 nM with randomized 
pH, ranging from 6.8 to 7.8. An ensemble model approach, outlined in the methods and 
Fig. 4C, was built to predict each probe, in which data from the probe to be tested was 
excluded from model generation. The training data from the remaining probes was used 
to build an ensemble model. The testing data were similarly partitioned, and the EN-model 
from within the ensemble closest to the average predictions was selected. An example 
for results for a single probe in Fig. 3A shows a direct relationship between the known 
and true values of neurotransmitters, with R2 close to 0.9 for dopamine and over 0.94 for 
serotonin, indicating the ensemble model captured the variance in neurotransmitter 
changes across the different solutions collected on this probe. The model also captured 
changes in pH, with an R2above 0.79, indicating a strong effect size.   
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Statistical summaries of all ten probes show an average RMSE below one µM in both 
dopamine and norepinephrine, for the exception of one outlier. While not directly 
comparable, pH has an average RMSE below 0.5, except for one outlier.  The outlier may 
indicate data quality issues for a single probe within the collection of probes. The average 
SNR for all ten probes were near 10 dB for dopamine and norepinephrine. Dopamine and 
serotonin have similar distributions SNR values, while the distribution SNR of pH lies 
much higher.  

 
Figure 3. LABS out-of-probe predictions of analytes. (A) An example of predictions for 
dopamine (green) serotonin (yellow), and pH (green) plotted against known values, along with 
the line of best fit. The predictions are plotted as mean and standard deviation at each 
concentration and pH. Each legend contains the equation for line of best fit between known and 
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predicted values. The R2 for dopamine is close to 0.9, greater than 0.9 for serotonin, and greater 
than (B) Box plots of average RMSE for dopamine, serotonin and pH for all ten probes. (C) Box 
plot of the average SNR for dopamine, serotonin and pH for all ten probes. 

Discussion 
The capabilities of electrochemical sensing at low voltage amplitudes were explored using 
two waveforms. The results of comparing dopamine predictions at the same low 
amplitude using both a linear sweep and burst forcing function indicates the random burst 
provides more accurate results at reduced amplitudes. A potential reason for the 
difference in model performance could be the relatively diminished autocorrelation of a 
random burst function pairs well with an algorithm like EN-penalized linear regression, a 
method that best suited for sparse signals (Candes & Wakin, 2008). There remain 
numerous untested possibilities for optimizing forcing function design. 
The ability to distinguish dopamine and norepinephrine using LABS demonstrates an 
important step forward in electrochemical sensing. The high prediction accuracy of the 
models demonstrates that information content needed to track neurotransmitters exists 
outside the peak oxidation potential of the target neurotransmitters, validating the 
assertion that electrochemical protocols need not span the specified voltage range of 
FSCV. Differentiating neurotransmitters with similar electrochemical profiles without 
additional pharmacological aid or neural stimulation allows invasive neurochemical 
recordings to produce chemical specificity.  
Proving the ability of LABS to make predictions out-of-probe is crucial to demonstrating 
feasibility of this method in-vivo. The results of the out of probe models to predict 
dopamine, serotonin and pH in mixture for a collection of ten probes demonstrate the 
ability to identify changes in multiple analytes changing simultaneously. For the exception 
of one outlier, all out-of-probe model predictions had a RMSE for dopamine and serotonin 
in mixture below one µM, which has yet to be demonstrated with any other modality at 
this temporal resolution. The outlined ensemble method demonstrates just one of many 
possibilities for building robust, chemically specific out-of-probe models to apply to in-vivo 
data. 
Low amplitude burst sensing arose from the need to adapt a decades old voltammetry 
methodology for human populations. The reduction in applied voltages, temporal 
resolution and chemical specificity indicate there remain unexplored possibilities in 
electrochemistry to optimize protocols for biological applications.  With the feasibility of 
LABS as sensing method for tracking multiple neurotransmitters has established, further 
testing can proceed to employ this method in-vivo, as well as further in-vitro testing to 
determine optimized sensing protocols. 

Methods 
In-vitro preparation 
Voltammetry recordings were collected on in-vitro solutions of neurotransmitters, 
including dopamine, norepinephrine and serotonin, diluted to predetermined 
concentrations in phosphate buffered saline (PBS) solution. The neurotransmitters in 
powdered form were initially diluted in 0.1 N HCl to 100 mM stock solutions. The 
neurotransmitters were further diluted in aliquots containing 6.8 pH PBS before being 
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prepared according to a predetermined solution schedule. Solutions were loaded into 
syringes and pushed into cylindrical glass flow cells that held the working end of the 
electrode. To limit time related signal drift, solution schedules were randomized. The 
solutions in the first experimental results section comparing low amplitude waveforms 
consisted of 7.8 pH PBS solutions with dopamine concentrations ranging for 0-2.7 µM in 
steps of 50 nM, with variation in steps added as gaussian noise. The solutions in the 
second experimental results section consisted of dopamine and norepinephrine at 
concentrations 0, 0.2, 0.4, 0.8 1.6 and 3.2 µM in solutions of 7.4 pH PBS. Next, results in 
Solutions in the final experimental results section consisted of data collected on ten 
probes used to create out-of-sample models were acquired on PBS solutions 0-2.7 µM 
concentrations in steps of 50 nM of dopamine and norepinephrine, both separately and 
in mixture, at PBS ranging in pH from 6.8 to 7.8. Data sets collected on different days had 
different randomizations of solutions and selections of mixtures.  

 
Figure 4. Graphical Depiction of data collection and modeling procedures. (A) In-vitro data 
collection starts by applying a specified forcing function through a probe submerged in solution. 
The current “frames” produce neurotransmitter concentration estimates, which arranged in 
sequential order to provide a time series of concentrations. (B) Within-probe modeling procedure 
starts by constructing a training set from randomly subsampled sweeps. Ten-fold cross-validation 
training using EN-penalized regression produces a linear model, parameterized over 𝛼 and 𝜆. The 
model then predicts concentrations from independent test data. (C) Out-of-probe modeling 
procedure leaves out one probe to test and trains a model on the remaining ten probes. The data 
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are subdivided into bins based on concentration of dopamine and serotonin, for which each will 
generate an EN-penalized linear regression model. The testing data were similarly partitioned 
and each of the models in the ensemble produce a set of predictions. The distance e!", defined in 
Eq. 6, is used to select the model which lies closest to the average of the predictions. 

Probe construction 
The probes used to collect voltammetry data were constructed in the laboratory based on 
FSCV carbon-fiber electrodes in the literature (Kishida et al., 2016). The probe 
manufacturing process began by threading a 1.2 cm length, 7 um diameter, carbon fiber 
into a (reference no. LS330423: Goodfellow) into a one centimeter fused one-centimeter-
long silica capillary coated with biocompatible polyimide coating (Polymicro 
Technologies). The carbon fiber was affixed to the assembly by pulling it through a droplet 
of epoxy placed at the end of the silica tubing. After drying overnight, the tip was trimmed 
to one millimeter beyond the edge of the assembly to form the working tip of the electrode. 
Another assembly was constructed by threading 29 cm long platinum iridium wire through 
a 28 cm long polyimide-coated capillary (Polymicro Technologies). The two assemblies 
were combined using silver paint and dried over 24 hours. Gold pins connectors used to 
hook up to the headstage were soldered onto the non-working probe end. The entire 
fabrication was then placed inside of a stainless-steel guide tube of similar construction 
to those used in DBS-electrode implantation surgery and secured at the microsensor 
assembly using two-part epoxy such that the working tip protruded one centimeter from 
the end of the guide tube. For more detailed explanations of methods probe construction 
procedures, see previous works (Kishida et al., 2016, 2011). 
Data acquisition and preprocessing 
Voltammetry data were acquired using an electrophysiology system consisting of a head 
stage (CV-7B/EC; Axon Instruments), amplifier (700B; Axon Instruments; Multiclamp), 
analog-to-digital converter (Digidata; Axon Instruments) and laptop (MacBookPro; Apple). 
Using pClamp controller software, the sampling frequency was set to 100 kHz. The upper 
limit of 10,000 frames per file were collected per solution when using 97 Hz low amplitude 
protocols and 1000 frames for the 10 Hz FSCV protocol. Prior to each round of data 
collection, 30 seconds of pre-cycling using a truncated 10 millisecond FSCV forcing 
function were used to equilibrate the signal. The workflow in Fig. 4A shows the how 
applied forcing functions produce current “frames” which correspond to known 
concentrations of neurotransmitters. Recorded frames were saved as axon binary files 
(abf) for each solution. 
To ensure quality and reproducibility of machine learning models, data were 
preprocessed using standard Python methods and libraries. Recorded frames of data 
stored in the raw abf files were truncated by removing the first and last 16 data points, 
leaving one thousand frame points per frame. In lieu of background subtraction, the 
frames were differentiated along the index, yielding data with 999 features per frame used 
as inputs in machine learning models. For each set of recordings, a stable window of 
frames – defined by the median current frame value – was identified and extracted. For 
each set of experiments, a stable 1500 frame window was selected based. Outliers, 
defined by median absolute deviations, were removed from each frame window. Within 
each window, 125 frames were randomly subsampled to train EN-penalized linear 
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regression models. The remaining frames were used as testing data to evaluate the 
model accuracy. 
EN-Penalized Linear Regression Calibration 
This study followed recent trends in human voltammetry by using EN-penalized linear 
regression to calibrate voltammetry (Bang et al., 2020; Kishida et al., 2016; Moran et al., 
2018). The preprocessed in-vitro training data act as the input, while the concentrations 
and pH act as training in the regression analysis performed by the Python package 
GLMnet (Balakumar, 2016; Zou & Hastie, 2005). The regression coefficients in 
β	correspond to each point along the differentiated frame. EN-penalized regression 
applies a penalty term defined by two hyperparameters, α and λ, which constrain the sum 
of squares residual to be minimized, as described in Eq. 1. 
 

min
("!,")∈ℝ"#$

1
2N,-y' − β( − x')β1

* + λP+(β)
,

'-.

. 
 

(1) 

 

The penalty term P+(β), described in Eq. 2, is defined by its size, λ, while the ratio between 
ℓ. and ℓ* norms, α, which ranges from zero to one.  

P+(β) = (1 − α)
1
2
‖β‖ℓ%

* + α‖β‖ℓ$ =,:(1 − α)β0* + α;β0;<
1

0-.

. 
 

(2) 

Within-probe models 
Preprocessed training data were used as inputs in EN-penalized regression training, as 
outlined in the workflow in Fig. 4B. Randomized ten-fold cross validation was carried out 
to optimize λ for α from zero to one in steps of 0.1.  The combination of hyperparameters 
with minimum cross-validation error were used to optimize the linear regression model. 
Within-probe models were used to calibrate training data. Predictions generated on test 
data were used to evaluate model accuracy in terms of root-mean-squared error (RMSE) 
and signal-to-noise ratio (SNR). 
Out-of-probe models 
Out-of-probe models, or models generated from probes independent of the one being 
tested, were created using an ensemble method outlined in Fig. 4C. Ensemble models 
were generated based on concentration bin, with each probe in the collection of probes 
left out for testing, w The data were partitioned into bins defined by concentration ranges, 
with dimensions of 900 nM dopamine by 900 nM serotonin, as shown in Table 1. Model 
training for each bin followed the same ten-fold cross-validation EN-penalized regression 
like the one described in the “Within-probe models” section. The testing data were 
similarly partitioned according to the same concentration bins. The reasoning behind 
restricting the concentration range of data lies in the assumption that concentrations of 
neurotransmitters would not fluctuate dramatically in-vivo. For each partitioned test data 
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set, all ensemble model regressions were used to predict dopamine, serotonin and pH. 
The optimal model for each set of test data according to the distances e',0,23 and e',0,45) 
between dopamine and serotonin predictions and the middle of the bin, defined in Eqns. 
4 and 5, and choosing the bin with minimum combined distance e',0, defined in Eq. 6. 

 
Table 1. Ensemble model data configuration: Data bins defined by concentrations of dopamine 
and serotonin used to generate ensemble model for out-of-probe predictions. 

r j ® 

i  
¯ 

DA: [0, 900] nM 

5HT: [0, 900] nM 

pH: [6.8, 7.8] 

DA: [0, 900] nM 

5HT: (900, 1800] nM 

pH: [6.8, 7.8] 

DA: [0, 900] nM 

5HT: (1800, 2700] nM 

pH: [6.8, 7.8] 

DA: (900, 1800] nM 

5HT: [0, 900] nM 

pH: [6.8, 7.8] 

DA: (900, 1800] 

5HT: (900, 1800] nM 

pH: [6.8, 7.8] 

DA: (900, 1800] nM 

5HT: (1800, 2700] nM 

pH: [6.8, 7.8] 

DA: (1800, 2700] nM 

5HT: [0, 900] 

pH: [6.8, 7.8] 

DA: (1800, 2700] nM 

5HT: (900, 1800] nM 

pH: [6.8, 7.8] 

DA: (1800, 2700] nM 

5HT: (1800, 2700] nM 

pH: [6.8, 7.8] 

 

e',0,23 =,(Y',0,23,6 −	r7,8,23@@@@@@@)*
,

6-.

 
 
(4) 

e',0,45) =,(Y',0,45),6 −	r7,8,45)@@@@@@@@)*
,

6-.

 
 
(5) 

e',0 =	e',0,23 +	e',0,45) (6) 
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