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Abstract 

Background 
Functional connectivity measures have garnered interest as possible biomarkers of psychiatric disorders 
including borderline personality disorder (BPD). However, small sample sizes and lack of within-study 
replications have led to divergent findings with no clear spatial foci. Therefore, we adopted an 
exploratory full-brain approach in the current study to evaluate which combinations of regions are most 
consistently predictive of BPD diagnosis. 

Methods 
We studied fMRI resting state functional connectivity in matched subsamples of 116 BPD and 72 control 
individuals defined by three grouping strategies: 1) referral diagnosis, 2) clinical diagnostic interview 
excluding patients no longer filling diagnostic criteria or controls scoring above threshold in a screening 
questionnaire and 3) self-reported symptom severity. We predicted BPD status using classifiers with 
repeated cross-validation based on multiscale functional connectivity within and between regions of 
interest (ROIs) covering the whole brain— global ROI-based network, seed-based ROI-connectivity, 
functional consistency and voxel-to-voxel connectivity within and between ROIs. Finally, we evaluated 
the generalizability of the classification in the left-out portion of non-matched data. 

Results 
Full-brain connectivity allowed successful classification (~70%) of BPD patients vs. control individuals in 
matched inner cross-validation. The classification remained significant when applied to unmatched out-
of-sample data, but accuracies were lower (~61–70%) than in fully matched samples. The over-
estimation of inner cross-validation accuracy was exacerbated by univariate regression of nuisance 
variables, particularly in smaller samples. Highest seed-based accuracies were in a similar range to global 
accuracies (~70–75%), but spatially more specific. In the seed-based classification, the regions 
implicated most often included midline, temporal and somatomotor regions. Highest accuracies were 
achieved with the clinical interview followed by referral diagnosis group definition. Self-report results 
remained at chance level. The accuracies were affected by an interaction of medications and global 
signal and univariate nuisance regression. Pairwise correlations, local consistencies and fine-scale 
connectivity matrices were not significantly predictive of BPD after multiple comparison corrections, but 
weak local effects coincided with the most discriminative ROIs in the classification.  

Conclusions 
Our multivariate results indicate that complex global functional connectivity differences are moderately 
predictive of BPD despite heterogeneity of the patient population. However, univariate nuisance 
regression applied to full cross-validation dataset can cause inflation of accuracies compared with left-
out test data.   
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Introduction 
Impaired social interactions are a central characteristic of personality disorders (1). Borderline 
personality disorder (BPD), in particular, has been empirically characterized by profound social deficits, 
with patients notably suffering from dysfunctional relationships (2). Core clinical features of BPD include 
affective dysregulation (3), impulsivity (4), heightened risk for self-harm and suicidality (5), relational 
instability and hypervigilance to motives of others in close relationships (6) as well as a bias in 
attributing hostility to others (7). It has been suggested that at the core of patients’ difficulties lies a 
problem with mentalizing, i.e. an inability to imagine and thus perceive and interpret human behavior in 
terms of underlying mental states (8,9). These social cognitive impairments may reflect changes in the 
capacity to understand the internal states of self and others and respond to implicit trust gestures (10). 
This may be particularly relevant for BPD as a developmental psychopathology, for which early adversity 
and disorganized attachment relationships have been established as critical contributing factors. A 
cascade of deteriorating disease states in patients is often provoked by heightened interpersonal 
stress/threat (e.g. rejection, abandonment, or isolation) accompanied by the experience of a reduced 
sense of agency and a resulting propensity to react (2,11). While there is accumulating evidence that 
symptoms such as emotional dysregulation are associated with functional and structural differences in 
frontal and limbic regions (e.g. 12, 13), relatively few studies have examined resting state functional 
connectivity differences in BPD. Some studies have reported connectivity increases while others have 
reported seed region-specific decreases, with the overall effect sizes being small and spatially scattered 
(e.g. 14–19). Other approaches have been proposed to evaluate brain connectivity differences, for 
example, estimates of anatomical connectivity based on diffusion tensor imaging. These have suggested 
mainly reduced fractional anisotropy (FA) values in BPD in varying white matter tracts, although the 
locations appear to differ from study to study. One study found reduced FA values in the inferior 
longitudinal, uncinate and occipitofrontal fasciculi (20), but these changes were only observed in 
adolescent and not adult participants. Another study tested the fractional anisotropy (FA) only in the 
uncinate and cingulum, finding decreased FA values in BPD sample compared to controls in the uncinate 
and not in the cingulum. By contrast, two further studies did find effects in the cingulum (21,22) and, in 
the case of one of the studies, not in the uncinate fasciculus (21). A recent meta-analysis of data from 
four studies also showed support for decreased FA values in BPD localized in the corpus callosum and 
the fornix (23). Some further studies have produced high accuracies and effect sizes based on other 
measures, such as BOLD power at specific frequency bands or network analysis techniques (24), but like 
most other studies to date, they have relied on small samples and the findings have not yet been 
replicated. Therefore, there is a concerning lack of consensus on whether, or in which ways, BPD may be 
characterized by aberrations in brain connectivity. 

Generally, an important limitation of prior functional connectivity studies of BPD has been the small 
sample size, usually approximately 20 patients in the studies cited above, although some studies with 
double the number of subjects exist (e.g. 24–26). Moreover, the lack of within-study replication through 
independent and repeated cross-validation has limited the insight into the reliability of the findings. To 
address these issues, we recruited a larger group of individuals with BPD from a number of referral 
services and a group of healthy controls (HC) in order to assess the reliability of the findings. Due to the 
inconclusive nature of previous results, we adopted an explorative approach by calculating the 
functional connectivity of fMRI data over the whole brain at different spatial scales and used these 
connectivity values as features in a machine learning classification approach. The different scales of 
analysis are schematically visualized in Figure 1 using a small set of hypothetical regions. At the global 
scale, we calculated a global connectivity matrix between activity time courses of 273 regions of interest 
(ROIs) covering the entire brain using linear correlations. At the seed scale, we extracted the rows of the 
global connectivity matrix to evaluate how important each region is for classification performance. At 
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the voxel-scale, we first calculated the accuracies based on voxel–voxel connectivity matrices within 
ROIs and between all pairs of ROIs. Finally, at the ROI scale, the functional consistency of the ROIs and 
ROI pairs (mean of the correlation matrix entries within/between ROIs reflecting the (inter)regional 
homogeneity of the voxels) was compared between groups and univariate contrasts and classification 
were performed to compare the local results directly to multivariate accuracies at other scales. We also 
evaluated the effects of spatial smoothing and global signal regression on prediction accuracies. In all 
classification analyses, we used 5-fold cross-validation of a balanced and matched (according to age, sex, 
scanning site, education level, and scores on the Raven’s standard progressive matrices (RSPM) 
intelligence test) subsets the participants (inner cross-validation). To gain insight on the stability of the 
results, we repeated the inner cross-validation multiple times with random splits into folds of training 
and test data. Finally, we evaluated the generalizability of the findings by applying the classifiers to the 
participants that were excluded from the matched inner cross-validation. 

 

Figure 1: Schematic representation of the 
scales of analysis for a selection of regions. A 
Global connectivity – The full global scale 
connectivity matrix between the mean time 
courses of each ROI was used as features for 
classification. B Seed-based connectivity – The 
connectivity from one ROI to all other ROIs 
(rows of the global connectivity matrix) are 
used for classification to improve spatial 
specificity of results. C Fine scale connectivity 
– Voxel-to-voxel connectivity between voxels 
in all unique pairs of ROIs are used for 
classification. Additionally, the consistency of 
ROIs and ROI pairs was calculated as the 
mean of all unique fine scale connectivity 
values. D Comparisons – Main comparison 
was between matched BPD and HC groups 
(left panel, yellow arrow). Additionally, to 
evaluate the effect of medications taken by a 
subset of the patient group, we repeated the 
global and seed-based analyses between 
matched groups of HC participants and sub-
groups of medicated (BPD–Med) and 
unmedicated (BPD+Med) BPD patients as well 
as between the two BPD groups (red arrows). 
Finally, we evaluated the effects of spatial 
smoothing and global signal regression to the 
accuracies in the different analyses (right 
panel). 
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Methods and materials 

Participants 
One hundred and eighty-seven adult participants were selected from a larger study investigating social 
exchanges in BPD and antisocial personality disorder. Here, we included only the control participants 
and the patients with BPD. From those, we excluded participants that had more than 10% of their data 
affected by excessive motion (defined as >.5 mm framewise displacement; N=17) or whose data was 
otherwise noisy (extensive signal distortion in the EPI images; N=1), and participants with incomplete 
data on sex/gender (N=2), leaving 167 participants (63 HC, 104 BPD as reported by referring clinician) for 
subsequent matching and analysis. 

Patients were referred by psychiatrists, care coordinators, and (trainee) clinical psychologists within 
specialist personality disorder services of seven London NHS Mental Health Trusts across five London 
boroughs. In the following, the diagnosis reported during this referral process is called the “referral 
diagnosis”. A further clinical interview was performed to evaluate whether the patients currently filled 
the diagnostic criteria for BPD and a diagnostic screening questionnaire was filled by the control 
participants to evaluate whether they showed symptoms consistent with BPD (see Participant matching 
section below). Individuals with recent psychotic episodes, severe learning disabilities, or current or past 
neurological disorders or traumas were excluded. Additionally, participants who were currently taking 
substances (other than their prescribed medication) were excluded in prior screenings (self-reported). 
Patients were interviewed by psychologists with the Structured Clinical Interview for DSM-IV Axis II 
Diagnoses (28). Since each rater interviewed different patients, rating consistency was assessed with a 
mixed-effects model. BPD symptom scores were placed at the within-level and clustered by rater at the 
between-level. The intra-class coefficient (ICC) was then estimated for BPD symptom scores. While 
higher ICCs typically reflect better reliability when reliability of diagnostic classification is evaluated, low 
scores are preferred using the current model as they reflect greater within-level vs. between-level 
variation (i.e., differences between patients within raters vs. between raters). The ICC for BPD symptom 
scores was 0.05 (95% CI [.01, .2]). Thus, raters were consistent in how they scored patients; the main 
source of variation occurred between patients within a given rater. Variability around the mean 
symptom rating was also low (M = 6.8, SD = 0.9), which further supports the consistency in ratings. 

The entire dataset reported here consisted of 71 controls and 116 patients (63 and 104 after exclusion, 
respectively), who varied widely in age from 17 to 62. Of all participants, 138 were females and 47 males 
(1 transgender, 1 no response) yielding a female to male ratio of 2.9/1. For the patients, female to male 
ratio was 4.7/1 (94 female, 20 male) and for the control group 1.6/1 (44 female, 27 male). Due to this 
discrepancy and the size difference between the groups, we excluded participants to make group sizes 
and sex distributions equal in the main analyses (see Participant matching-section) and applied the 
classifiers on this matched data to the rest of the (unmatched) sample. Of the patients, 42 were not 
medicated, 5 patients were on four medications, 7 on three medications, 29 on two medications and 33 
on one medication. None of the control participants reported to be currently taking prescription 
medications. Medication included most often antidepressants (various types, 52% of patients), 
antipsychotics (various types, 19% of patients), benzodiazepines (9% of patients), 
anticonvulsants/epilepsy medication (8%), beta blockers (9%), sleeping pills (6%) and antihistamines 
(3%). 

Procedure 
Over several visits, all participants underwent a comprehensive study protocol comprising a number of 
behavioral paradigms, questionnaires, diagnostic and developmental interviews, as well as the RSPM 
test to estimate their non-verbal fluid intelligence, and structural and functional (neuroeconomics-based 
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two party social exchange neuroimaging tasks) magnetic resonance imaging. Resting state functional 
connectivity data were acquired between the last task-based fMRI paradigm and multi-parameter 
mapping MRI sequences. The order of the task paradigms was counter-balanced to avoid potential 
mean differences introduced by the preceding task, although we did not expect lasting, consistent 
connectivity differences to remain after the task had ended. During resting state functional imaging, 
participants were instructed to lie still inside the scanner with their eyes open while looking at the MS 
Windows 2000 start screen, with the windows logo at the center. Participants were instructed to “think 
of whatever comes to mind and to let their mind wander”. Eye tracking was used to control whether 
they stayed awake during the 4:30 minutes of data acquisition and those data sets excluded where 
alertness was questionable or where participants fell asleep. 

Functional magnetic resonance imaging 
Functional imaging was performed at three sites in London, United Kingdom with similar Siemens 
MAGNETOM Trio 3-tesla MRI scannners. The voxel size of data was 3.4375 X 3.4375 X 4 mm3, FOV 220 
mm, 37 slices, TR 2 s, TE 25 ms, flip angle 90°. Total duration of the functional scan was 5 minutes (150 
volumes). Additionally, T1 weighted MPRAGE images (matrix size 512x448, in-plane resolution 
0.4785x0.4785 mm, 192 slices, slice thickness 1 mm, TR 1200 ms, TE 2.66, inversion time 600 ms, flip 
angle 12°) were acquired for anatomical registration. Because of the three different locations and 
scanners, the scanning site was used as an additional hard criterion during pairwise matching of subjects 
and it was added as an effect of no interest in the analyses. 

Preprocessing 
The fMRI data was preprocessed using FSL (fMRIB Software Library; 21, 22). The first four volumes were 
removed from the data to allow the tissue magnetization to stabilize. Motion correction was applied 
using MCFLIRT (31) and brain extraction was performed using BET (32). Anatomical images were 
corrected for intensity inhomogeneities during the brain extraction. Motion parameters were regressed 
out of the data using the general linear model (GLM) in FSL (fsl_glm) in subjects’ native space. 
Additionally, volumes containing excessive motion were blacklisted using the fsl_motion_outliers tool, 
and the blacklist matrix was later used for excluding the effects of those volumes when calculating the 
connectivity matrices. Functional data was registered to the anatomical data of each subject and then to 
2-mm MNI standard space (Montreal Neurological Institute) using FLIRT (31) using 9 degrees of freedom 
(translation, rotation and scaling). Spatial smoothing of the data was omitted during preprocessing, but 
the effect of spatial smoothing was explored during analysis (preprocessed data was smoothed with 
Gaussian kernel with 6-mm full width at half maximum). High-pass temporal filter with Gaussian-
weighted least squares straight line fitting (σ=200s) was applied to remove low-frequency drifts from 
the data. When loading the data for analysis, an additional Parks-McClellan finite impulse response, 
linear-phase band-pass filter was applied in Matlab (0.02–0.08 Hz, minimum attenuation in the stop-
band 40 dB, maximum ripple in the pass-band 3 dB). 

Participant matching 
The subject groups were formed using three strategies: 1 – prior referral diagnosis of BPD 2 – diagnosis 
based on structured clinical interview according to DSM-IV (SCID II; subsequently referred to as “SCID 
grouping”) excluding patients who no longer filled the diagnostic criteria for BPD and control 
participants scoring above the cutoff in the Standardised Assessment of Personality: Abbreviated Scale 
(SAPAS; 25), and 3 – cutoff on the borderline subscale of Personality Assessment Inventory (PAI-BOR; 
26) measuring the self-reported symptom severity (here referred to as “PAI-BOR grouping”). In the main 
analysis, to be conservative and to remove variance of no interest and generate groups of comparable 
size, each HC participant was individually matched with a BPD participant. The same script was used for 
participant matching for all grouping strategies according to the following pre-defined algorithm, which 



Lahnakoski et al. Brain connectivity in borderline personality disorder 

7 
 

was chosen prior to analysis. First, for each HC participant, BPD participants that were either of different 
sex or were imaged at a different site were removed. Then the 10 BPD participants that were closest in 
age to the current HC participant were retained and the person with the most similar RSPM score and 
education level was selected as the matching BPD participant for the HC participant. The resulting age, 
education level and RSPM (35) score distributions are depicted in Figure 2 for the SCID II grouping. The 
distributions were largely similar for all groupings. Patient (and control) group sizes for different 
grouping strategies were N=39 for SCID II, N=52 for Referral and PAI-BOR groupings, and N=26 for 
unmedicated SCID II grouping. Because a subset of the patients showed higher levels of motion based 
on the total root-mean-square (RMS) motion, but did not reach the exclusion criteria, we additionally 
performed motion matching to evaluate the effects of motion on classifier performance. To achieve this, 
we repeated the generalization analyses at 5 different motion matching levels by splitting the 
participants into 1–5 equally sized groups based on the RMS motion percentiles. This was used as an 
additional hard matching criterion in the inner cross-validation as described above for sex and imaging 
site. We additionally calculated correlations between classifier scores and levels of RMS motion across 
participants to evaluate whether the classifier performance was driven by overall motion. 

 

Figure 2: Violin plot histograms of the distributions of age, education level and RSPM scores after subject matching. 
These data show distributions for grouping based on the SCID II diagnostic interview including the medicated 
patients. Distributions were largely similar with the other grouping approaches. 

To further reduce effects of age, sex and scanning site, we regressed these variables out of the raw 
connectivity values of the whole population at each voxel/ROI pair in the main analysis. To evaluate the 
generalizability of the classification, we additionally split the sample into a balanced training set where 
we performed a similar nuisance regression as above, but additionally applied the fitted regression 
weights to the unbalanced left-out data to perform the out-of-sample analysis described below. Because 
more than half of the participants in the entire BPD sample were on at least one medication (See Table 1 
for summary of medication status and sample size with different strategies in full sample and after 
exclusion and group matching, respectively), we visualized the confusion matrix of three-group 
classification (HC, BPD+Med, BPD–Med). Finally, we repeated the two-group (HC vs. BPD) analyses with 
matched groups of only unmedicated patients and healthy controls using the SCID II diagnostic criteria 
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to explore the effect of medication on the classification performance. This left 26 people in each group 
after matching for sex, scanning site, age, education level and RSPM score. 

Table 1: Medication status of patients and sample sizes with different grouping strategies. 

  Number of medications   

 Grouping 0 1 2 3 4 >0 N NBPD 

Full Referral 36.2% 28.4% 25.0% 6.0% 4.3% 63.8% 187 116 

In
cl

u
d

ed
 SCID 40.5% 23.0% 21.6% 8.1% 6.8% 59.5% 130 74 

PAIBOR 45.4% 23.1% 21.3% 6.5% 3.7% 54.6% 161 108 

Referral 33.7% 29.8% 25.0% 6.7% 4.8% 66.3% 167 104 

M
at

ch
ed

 SCID 46.2% 28.2% 17.9% 5.1% 2.6% 53.8% 78 39 

PAIBOR 50.0% 23.1% 21.2% 5.8% 0.0% 50.0% 104 52 

referral 36.5% 32.7% 21.2% 5.8% 3.8% 63.5% 104 52 

 

fMRI data analysis 
Data were analyzed in Matlab (R2017a; MathWorks, Inc., Natick, MA, USA). Data were loaded using 
NIfTI tools for Matlab (Jimmy Shen; http://de.mathworks.com/matlabcentral/fileexchange/8797-tools-
for-nifti-and-analyze-image). We used “Brainnetome” (36) and cerebellar connectivity (37) atlases 
masked based on the EPI data intensity over participants to define 273 ROIs covering the entire gray 
matter. ROI time courses were calculated as the mean of the voxel time courses belonging to that ROI1. 
Connectivity matrices were then calculated as linear correlations between ROI time courses while 
controlling, through linear regression, for volumes that were affected by excessive motion (FSL motion 
outliers output file) estimated during preprocessing (additionally, motion parameters were regressed 
out during preprocessing as described in the Preprocessing section). Additionally, the analyses were 
repeated after also regressing out the mean signal over all voxels within the brain to elucidate the 
effects of global signal regression (GSR) on connectivity structure and classification accuracy. 

We used linear support vector machine (SVM) classifiers with 5-fold cross-validation implemented in 
Statistics and Machine Learning Toolbox in Matlab. Classifiers were trained on data at multiple scales 
(see Figure 1): 1 – the full correlation matrices (global network classification), 2 – the rows of the 
correlation matrices (seed based classification), 3 – mean correlation between voxels in a ROI (ROI 
consistency) and between ROI-pairs, 4 – full correlation matrices between voxels within ROIs (within ROI 
connectivity) and 5– correlation matrices between voxels of pairs of different ROIs (between-ROI 
connectivity). For the global network classification, we additionally performed a three-group 
classification using a combination of three one-class SVM classifiers (radial basis function kernel) to 
visualize the confusion between healthy controls and patients with and without medication. 

                                                             
1 Additionally, we repeated the analyses using the first principal component time courses of the ROIs. This resulted 
in a reduction of correlation between ROIs and slight reduction in prediction performance of the classifiers. Seed 
based accuracies were positively correlated over ROIs, but variable (r~0.38) and the significantly predictive regions 
overlapped, but the overlap was not perfect (DICE index ~0.61)). Employing the mean time courses rather than 
principal components also yielded connectivity matrices with a clearer modular structure. Therefore, we focus 
here only on the results based on the mean time courses of the ROIs. 
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All the main classification analyses were repeated multiple times to estimate the stability of the results 
(global classification 1000 times, seed-based classification 50 times/ROI, ROI consistency and finally 
within/between-ROI classification 10 times due to computational costs). Significance of all classification 
analyses were estimated by repeating identical analysis pipelines with randomly permuted labels for the 
training data and comparing the true accuracies to the obtained empirical null distribution. The number 
of permutations was equal to the number of iterations of the classifier with real labels as we aimed to 
estimate the distribution of both the real accuracies in the population as well as the associated null 
distributions. Null distributions for ROIs and ROI-pairs were assumed to be identically distributed and 
thus the entries of the connectivity matrices were aggregated into a single null distribution for each 
analysis type to reduce computation time, but different distributions were estimated for different 
analysis scales (global, seed-based and voxel-scale analyses). To improve the estimates of probabilities 
at the extreme values of the null distributions, we fit semi-parametric distributions to the empirical null 
values where the bulk of the distribution was represented directly by the empirical probabilities and the 
tails (p<0.1 and p>0.9) were approximated by pareto distributions as implemented by paretotails-
function in Matlab. 

In addition to the main analysis, an out-of-sample analysis was performed to assess the generalizability 
of the classifiers to completely unseen data. Here, a classifier was trained on random balanced 
subsamples, the inner 5-fold cross-validation accuracy was estimated similarly to the main analysis and, 
additionally, the classifiers trained on inner sample were tested on the left-out data, which was 
inherently unbalanced both regarding sex and diagnosis (more female than male and more patients than 
controls). This analysis was performed with and without nuisance regression (weights of which were 
based only on the inner sample, see above). Additionally, for the global connectivity matrices, the 
analysis was performed with different training sample sizes (1/3, 1/2 and 2/3 of the full matched sample 
size of the main analysis) and the analysis was repeated 500 times for each combination. For the seed-
based and within/between-ROI analyses, we only estimated the out-of-sample accuracy with ½ of the 
total sample and reduced number of iterations (50 for seed-based, 10 for within/between ROI matrices) 
due to computational complexity. Null distribution was estimated similarly but with permuted labels, as 
in the main analyses.  

In addition to the classification analyses, we contrasted the univariate connectivity values (correlations 
between pairs of ROIs and local consistencies) with two-sample t-tests with unequal variances. To 
evaluate the replicability of these findings, we additionally repeated the analyses 100 times by splitting 
the data into a “discovery” and “replication” samples (40% of the data, each, to reduce the overlap 
between subsequent iterations) and evaluated the t-value distributions and replication rates in only 
those links that showed a significant effect in the discovery data. This evaluation was performed at 
different thresholds (p<.05, p<.005 and p<.001, uncorrected). Finally, we performed a simple univariate 
threshold-based out-of-sample analysis to assess the discriminability of the connectivity values. Here, 
we selected a threshold that best discriminated a training sample (defined as the midpoint between two 
participants’ values that maximized the training accuracy2) and applied this to the left-out data. This 
analysis was repeated 50 times and again compared to a null distribution estimated using randomized 
group labels.  

                                                             
2 Note that this procedure may not have a unique solution as more than one threshold can lead to the same 
accuracy. In cases when this happened, we selected the lowest such threshold. Here, we performed the univariate 
classification as a supplementary analysis to the univariate t-test to allow a simpler comparison with the 
classification analyses and selected this approach due to its computational efficiency. More robust methods may 
be preferable when high generalizability is of primary concern. However, the results presented here were largely 
consistent with a more standard linear discriminant analysis in a smaller validation analysis. 
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Results 
We explored the effects of several factors in the data: 1 – scale of analysis (global, seed-based, ROI/ROI-
pair consistency, fine-scale voxel-level connectivity), 2 – diagnostic approach (referral, SCID II or PAI-
BOR), 3 – medication status (control vs. BPD in medicated, unmedicated and mixed groups; BPD 
unmedicated vs. medicated), 4 – global signal regression, 5 – spatial smoothing. 

At the level of single links between ROIs (correlation between ROI time courses), there were no 
significant differences (t-test) with any of the group definition strategies or preprocessing approaches 
after correcting for multiple comparisons. Applying the global signal regression, the connectivity values 
were reduced leading to more negative correlations, which has been mathematically shown to occur 
(38), but the group differences remained non-significant. Because the group differences did not survive 
corrections for multiple comparisons, we evaluated the reproducibility of local link-level differences at a 
more liberal threshold by repeatedly (100 iterations) splitting the data to non-overlapping discovery and 
replication subsamples and evaluating the replication rates (Figure 3). No effects replicated at even 
moderately conservative uncorrected thresholds (p<.001; Figure 3A, replication percentages shown 
black outline next to the vertical p-value thresholds). Even at liberal thresholds (p<.05, uncorrected) 
replication rates remained low (6.1% for positive and 8.6% for negative effects). However, there was a 
tendency for the effects to be in the same direction in both discovery and replications subsamples as 
evidenced by the shift in the distributions and the lower reversal (percentages without outline) than 
replication rates. While replication rate across all links was relatively low, a subset of links replicated in 
up to 38% of all iterations (Figure 3B), suggesting that weak, but reproducible effects may exist. 
However, the pattern of differences is relatively sparsely spread around the brain. To summarize the 
regions that most often showed group differences, Figure 3C shows the number of significantly 
replicable links originating at each ROI. These results highlight a mix temporal, temporo-parietal, midline 
and subcortical regions as the most discriminative “hubs”, showing the highest number of discriminative 
links. 

Figure 4 A shows the accuracy distributions of cross-validated support-vector machine classifiers (1000 
iterations; 5-fold cross-validation within iterations) at the level of global connectivity structure 
compared with the null distributions of the classifiers trained with randomly permuted labels. Highest 
classification accuracies were achieved with grouping based on the SCID II interviews (mean accuracy 
70%, p<0.00001) followed by referral diagnosis (mean accuracy ~58%, p<0.05). This drop in accuracy 
was driven by chance level prediction of individuals who either no longer fulfilled the diagnostic criteria 
for BPD in the SCID II interview (patients) or scored above threshold in the SAPAS screening 
questionnaire for personality disorders (controls). Accuracies using only the scores of the self-reported 
symptom severity (PAI-BOR) remained at chance level (~56%, p~0.07–0.11, n.s.). Overall, these results 
suggest that a thorough diagnosis at the time of intake is critical to uncover brain fingerprints of current 
psychopathology. Thus, in the following figures, we will focus mainly on the SCID grouping strategy. 

Global signal regression reduced accuracies with all grouping strategies (SCID II 65%, p<0.001; referral 
diagnosis 55%; n.s., PAI-BOR ~53%, n.s). Results with spatial smoothing have been omitted in the figure 
because, at the scale of ROI–ROI connectivity, spatial smoothing had no discernible effect on the 
accuracies. On average, the predictive performance was largely balanced, i.e. the mean sensitivity and 
specificity were approximately equal to each other and to the mean accuracy (see also Supplementary 
Figure 1).  

The seed-based ROI–ROI connectivity (Figure 4 B) revealed widely distributed areas whose connectivity 
profiles were predictive of BPD diagnosis with the most discriminative SCID II grouping strategy, that are 
similar to those showing weak but reproducible local effects in Figure 3. The most discriminative regions 
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largely overlap with social brain networks that are activated during mentalizing (39). However, these 
regions extend beyond the midline and temporoparietal regions of the “mentalizing network”, to the 
left hemisphere dominant temporo-frontal regions that are important for language as well as parietal 
regions along the intraparietal sulcus (IPS), supplementary motor area and premotor regions that are 
important for action understanding as well as pain perception during naturalistic social observation (see 
e.g. Lahnakoski et al., 2012). To compare the most discriminative regions across all three grouping 
strategies, Figure 3 C shows the overlap of the significantly predictive seed regions. The regions that 
most consistently discriminate between patients and controls with all grouping strategies include the 
dorsomedial prefrontal cortex, precuneus and posterior cingulate cortex, anterior temporal lobe, and 
left-lateralized posterior superior temporal sulcus, inferior frontal gyrus, anterior insula and 
supplementary motor area/paracentral lobule. The seed ROIs that reached a significant classification 
accuracy with at least two of the three group definition strategies are listed in Table 2 including the top 
rated “Behavioral domains” listed in the Brainnetome atlas. Most common high-level domains are 
cognition (13 regions; most common sub domains were social cognition, memory and language, each 
mentioned 3 times), perception (8 regions, 6 of which were visual), action (4 regions including execution, 
inhibition and imagination), followed by emotion and interoception (2 regions each). The full list of 
significant classification accuracies with each group definition strategy and the MNI coordinates of ROI 
centroids and atlas labels are listed in Supplementary Table 1). 

 

Figure 3: Reproducibility of local differences. A The distribution of all local difference t-values across connections 
and iterations is shown in gray. The distributions of t-values in the outer cross-validation of those links that showed 
significant positive (BPD>HC) or negative (HC>BPD) effects in the inner cross-validation sample are shown in red 
and blue, respectively. The distributions and the associated (one-tailed) t-value thresholds for three p-levels are 
plotted in solid (p<.05), dashed (p<.005) and dot-dashed (p<.001) lines. Replication rates are shown surrounded by 
a black outline next to the lines denoting each p-value threshold (red numbers indicate BPD>HC and blue numbers 
HC>BPD effects in the discovery sample). Reversal rates of the effects are shown similarly, except without a black 
outline.  B Replication rates of individual links at initial uncorrected threshold of p<.05 between discovery and 
replication analysis. Thickness and color intensity indicate the percentage of replications over iterations and 
threshold for visualization is based on the maximum value observed in identical analysis with randomly permuted 
labels. Colors are similar to panel A. The distribution of replicabilities over all links is shown on a logarithmic scale 
below the connectivity plot. C Number of links showing replicable effects from each ROI (node degree in panel B). 
Colormap is capped at 6 to visualize differences between ROIs. However, highest degree is 11 at the left pSTS ROI.  
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Figure 4: Classification accuracies based on global network and seed-based ROI connectivity. A Distributions of 
accuracies based on full global network connectivity between ROIs over 1000 iterations with different group 
definition strategies (left – SCID II diagnosis, middle – referral diagnosis, right – PAIBOR self-report cutoff) showing 
highest accuracies for the SCID II diagnosis, reduced accuracies for the referral diagnosis grouping and null 
accuracies for grouping based on self-reports. Null distribution using randomly permuted labels is shown in gray; 
accuracies without global signal regression are shown in blue and accuracies with global signal regression in red. 
Global signal regression reduces accuracies in all cases, but results are unaffected by spatial smoothing at the ROI 
scale. B Mean seed based accuracies visualized on the brain surface at each seed ROI location for SCID II diagnosis. 
Threshold is set at p<0.05 in the full distribution without averaging. C Overlap of significantly predicting regions 
with the three grouping strategies. Color indicates in how many (out of three) analyses the prediction accuracy is 
significant. Abbreviations: aSTS/ATC – anterior superior temporal sulcus/anterior temporal cortex, Cer – 
Cerebellum, IPL/OPL – inferior/opercular parietal lobule, IPS – intraparietal sulcus, LOC – lateral occipital 
cortex/complex, mOC – medial occipital cortex, mPFC – medial prefrontal cortex, OFC – orbitofrontal cortex, PreCG 
– precentral gyrus, pSTS – posterior superior temporal sulcus, TPJ – temporoparietal junction, vTC – ventral 
temporal cortex.  

To evaluate the extent to which the findings in the matched subsample generalize to new data, we 
applied the classifiers trained on balanced subsamples of the data to the unbalanced left out 
participants. Figure 5A shows the inner and outer cross-validation accuracies with the different grouping 
strategies before (left) and after (right) removing nuisance covariates based on the training data. The 
colors of the dots indicate the size of the groups in the inner cross-validation sample. Although the 
classification accuracy remains above chance level in the outer generalization sample, the inner cross-
validation tends to over-estimate the accuracy, particularly when the nuisance covariates are regressed 
out of the connectivity matrices, suggesting either non-generalizable nuisance effects or possible data 
leakage from the nuisance regression in the inner cross-validation sample. 
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Although the accuracies were significant, generalizable and stable with multiple training sample sizes, 
the applicability of these accuracies (0.6-0.7, depending on the specific approach), the real-world 
applicability depends on the base rate of the condition in the population. To illustrate this, Figure 5B 
shows the accuracy and the positive and negative predictive values sampled at different prevalence 
levels in the outer cross-validation sample. While the accuracy remains stable at all prevalence levels, 
the positive predictive value drops (and negative predictive increases) quickly as the prevalence drops to 
more realistic levels. 

Figure 5C and D show the ROIs whose connectivity profile (rows of the connectivity matrix) was 
significantly predictive of BPD diagnosis using the SCID grouping. The data are visualized as percentage 
of iterations where both inner and outer cross-validation results were significant (Figure 5C) and 
percentage of iterations where either inner (red: Figure 5D) or outer (blue) cross-validation accuracies 
were significant (p<0.05, FWER controlled). The areas are largely consistent with both approaches. 

 

Figure 5: Generalization of classification to unseen data. A Distributions of classifier performance in inner vs. outer 
cross-validation samples in the same iterations. Left panel shows results without nuisance regressors and right 
panel shows results when nuisance effects were estimated in the whole inner cross-validations sample. B Effects of 
prevalence of BPD diagnosis in the outer cross-validation sample. The mean accuracies, positive predictive values 
and negative predictive values are plotted against the proportion of patients in randomly selected subsets of the 
left-out data. C ROIs whose connectivity profiles significantly (p<0.05, FWER controlled in empirical null analyses) 
predicted BPD diagnosis in both inner and outer cross-validation in the same iteration. D ROIs whose connectivity 
profiles significantly (p<0.05, FWER) predicted BPD diagnosis either in the inner (red) or outer (blue) cross-
validation. 
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Table 2: Consistent accuracies with different group selection strategies. Region labels, accuracies and top 
Behavioral Domains listed in the Brainnetome atlas (http://atlas.brainnetome.org/bnatlas.html; retrieved Feb. 15 th 
2019) 

  Classification accuracy  

Region label   SCID II Referral PAI-BOR Behavioral Domain 

SFG_R_7_3 A9l 0.633 0.588  Cognition.Social_Cognition 

SFG_R_7_6 A9m 0.619 0.603  Cognition 

IFG_L_6_3  A45c 0.690 0.625 0.590 Cognition.Memory.Explicit 

PrG_R_6_2  A6cdl 0.694 0.607  Perception.Vision.Shape 

PCL_R_2_1 A1/2/3ll 0.629  0.638  

PCL_L_2_2 A4ll 0.624 0.593  Action.Imagination 

STG_L_6_3 TE1.0&1.2 0.627 0.612  Cognition.Music 

STG_L_6_5 A38l 0.638 0.598   

STG_L_6_6 A22r 0.624 0.625 0.591 Emotion.Sadness 

MTG_L_4_3 A37dl 0.605 0.602  Cognition.Language.Syntax 

ITG_L_7_2  A37elv 0.595 0.601  Cognition.Memory.Working 

PhG_L_6_3 TL 0.659 0.592  Cognition.Social_Cognition 

pSTS_L_2_2 cpSTS 0.674 0.594  Cognition.Language.Speech 

SPL_R_5_1 A7ip 0.601 0.596  Interoception.Sexuality 

Pcun_R_4_1 A7m 0.696 0.601  Perception.Vision.Motion 

Pcun_R_4_2 A5m 0.606  0.602 Cognition.Social_Cognition 

Pcun_L_4_4 A31 0.614  0.623 Cognition.Language 

INS_L_6_2 vIa 0.631 0.591  Cognition 

INS_L_6_3 dIa 0.605 0.620   

INS_R_6_3 dIa 0.644 0.588  Action.Inhibition 

CG_R_7_3 A32p 0.597 0.588  Perception.Olfaction 

CG_R_7_4 A23v 0.633 0.593 0.593 Emotion 

Cun_L_5_1 cLinG 0.588 0.613  Perception.Vision 

Cun_R_5_3 cCunG 0.668 0.613  Perception.Vision 

OcG_L_4_4 iOccG 0.662 0.590  Perception.Vision 

sOcG_L_2_2 lsOccG 0.588 0.596  Cognition.Reasoning 

Hipp_L_2_2 cHipp 0.629  0.589 Cognition.Memory.Explicit 

Str_R_6_6 dlPu 0.626 0.593  Action.Execution 

Tha_L_8_1 mPFtha  0.588 0.594 Interoception.Bladder 

Tha_L_8_2 mPMtha 0.606 0.597  Action.Execution 

Tha_L_8_5 PPtha 0.604  0.607 Perception.Vision.Color 

Tha_R_8_5 PPtha 0.600  0.603 Perception.Somesthesis.Pain 

Cer_L_9 Crus I 0.697 0.615   

Cer_R_9 Crus I 0.687 0.598   
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Because there were differences in the amount of in-scanner motion between groups, we also performed 
the classification analysis after matching the training sample for level of motion by splitting the data to 
1–5 equally sized motion percentile groups based on their total RMS motion (1=no matching). The mean 
accuracies remained in a similar range for all motion matching scenarios (Supplementary Table 2) and 
classifier score were not significantly correlated with the amount of motion (Supplementary Table 3) 
with any of the matching strategies. This suggests that the classifier performance was not primarily 
motion related. 

To explore whether symptom dimensions or other individual characteristics were associated higher 
likelihoods to be classified as a patient, we explored the correlations between classifier scores and the 
PAI-BOR total and sub-scale scores as well as demographic variables, focusing only on the SCID grouping. 
We found that there were significant differences in all the diagnostic scales between groups, as 
expected, but there were no consistent linear effects between the scales and classifier scores after 
controlling for mean group differences. That is, higher subjective ratings of BPD-like symptoms did not 
lead to higher likelihood that the classifier predicted within either group, or across the whole sample 
after controlling for group mean effects. 

At the global level, we observed a significant correlation between group likelihood and RSPM scores 
(r~0.7) as well as education level (r~0.6) after controlling for the linear effects of these variables in the 
SCID II sample before classification. This relation was caused by regressing out the link-level effects of 
these variables; when the regression was omitted, the correlation was abolished (r~-0.2), but the 
classification accuracy at the global level (SCID II, no GSR) increased (up to ~80% with some 
combinations of sample size and motion matching). This suggests that differences of functional 
connectivity related to performance on the RSPM test may also modulate the same connectivity 
patterns that are important for predicting BPD diagnosis and removing these effects from the data 
through univariate linear regression may introduce unwanted effects into subsequent multivariate 
classification. 

At the fine-scale connectivity between and within regions, we saw no significant prediction accuracies, 
similarly to the single link results. Although accuracies of 70–80% were observed for some pairs of ROIs 
and the distribution of accuracies over ROIs was shifted slightly to the right compared with the null 
distribution, no ROI pairs remained significant after correcting for multiple comparisons because high 
accuracies also existed in the null distribution. Moreover, at a more liberal threshold, the most 
predictive ROI were spread sparsely across the brain with no discernible pattern further suggesting that 
single connections may be unreliable predictors of BPD. 

To investigate the role of medication on the predictive performance, we repeated classification between 
three groups: healthy controls, BPD patients without medication (BPD–Med), and BPD patients that 
were taking one or more medications for their condition (BPD+Med). These analyses were only 
performed with the SCID II based group definition strategy to reduce the number of combinations. The 
mean confusion matrix (over 100 iterations) for the three-class classification based on global 
connectivity matrices is presented in Figure 6A. As is apparent, the controls are successfully classified 
from both patient groups (chance level 33%). However, the medicated and unmedicated patients are 
confused with each other suggesting the biggest distinction is between HC and BPD irrespective of 
medication status. 

Finally, to more thoroughly explore the effect of medication and its interaction with parameters such as 
spatial smoothing and global signal regression, we also performed classification between all pairs of 
groups (HC vs. BPD–Med, HC vs. BPD+Med, BPD–Med vs. BPD+Med). Figure 6B shows the distributions 
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of pairwise accuracies between all three pairs of groups. Accuracies are significant between HC and both 
patient groups, although accuracy for BPD+Med group falls just into chance level with global signal 
regression (from 64–65% to 58–59%). By contrast, in HC vs. BPD–Med analysis GSR slightly improves 
accuracy (59% to 61–62%). The accuracies between medicated and unmedicated patient groups are at 
chance level (52–53%). At the level of seed-regions, there was relatively little overlap between the three 
pairwise classifications. However, regions where controls are successfully classified from patient groups 
are similar to those showing most consistent accuracy across grouping strategies in Figure 4. 

 

Figure 6: Effects of medication on global classification accuracies with SCID II grouping. A Confusion matrix in 
three-class classifier between healthy controls (HC), patient without medication (BPD–MED) and patients with 
medication (BPD+Med). B Distributions of accuracies between pairs of matched subgroups. Between HC and 
BPD+Med accuracies are reduced by GSR, a pattern that is reduced and reversed when classifying between HC and 
BPD–MED groups. Accuracies between the two BPD groups remain at chance level. C ROI-maps showing the seed 
regions that were discriminative of the groups in each analysis. Blue indicates classification between BPD+Med and 
BPD–Med, red classification between HC and BPD+Med and green between HC and BPD–Med. Overlapping regions 
are shown in mixed colors. 
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Discussion 
Our results demonstrate that significant and wide-spread differences of functional connectivity exist in 
patients with borderline personality disorder compared with healthy control participants at multiple 
scales. By contrast, we observed no strong local univariate changes in connectivity, although some weak 
effects could be replicated in multiple non-overlapping subsamples. Our findings further underline that a 
thorough diagnostic procedure based on a structured clinical interview as well as a screening for 
personality disorders in the control group are associated with better discriminative performance in 
classification of patients. Clinically, our findings suggest that rsMRI may be sensitive to some aspects of 
psychopathology of BPD. However, additional work should be undertaken to evaluate whether data-
driven classification schemes can predict outcome and treatment assignment, as is already starting to be 
done for other psychopathologies (e.g. 33–35). 

Taken together, our multi-scale analyses indicate that the predictive power of functional connectivity is 
most consistent in cortical midline structures, posterior and anterior aspects of the superior temporal 
sulcus, and lateral parietal regions. These regions overlap with multiple different canonical functional 
networks that are associated with mentalizing and social processing, sensorimotor functions, action 
observation and bodily sensations/homeostatic monitoring. The former set of regions has recently been 
shown to increase in grey matter volume as a result of BPD-tailored psychotherapy (44). Prior findings 
on symptom-related alterations of connectivity in BPD have been rare and reported effects relatively 
small. This is also consistent with the lack of robust differences of connectivity using univariate contrasts 
in the current data. A recent study did find differences between BPD and HC individuals in degree 
centrality and fractional amplitude of low-frequency fluctuations in partly overlapping regions of the left 
posterior temporal lobe and precuneus as those shown in the current study and found the changes to 
be correlated with attachment scores in the patient population (15). Here, we used self-reported BPD 
and depression symptoms and medication status as predictors of classifier group likelihoods to assess 
their importance for classification. However, we observed no linear effects of the symptom scores 
beyond a mean group difference with the current symptom measures and sample size. Therefore, in 
future studies, larger cohorts and additional phenotyping would be important to map specific clinical 
aspects of the disorder to specific brain regions. For example, the predictive power of the 
somatosensory regions might be higher for those individuals showing repeated self-harming behaviors, 
which might manifest in different representation of bodily sensations. Or, for instance, increased 
symptoms of social paranoia or affect regulation could specifically be reflected in the connectivity of 
“social brain” regions. Comparing the different group specifications in the current study, self-report 
questionnaires of symptoms appear to be unreliable predictors of abnormal brain function and should 
be complemented by thorough clinician-based diagnostic procedures and quantitative interaction-based 
phenotyping (45). 

While we consistently observed significantly higher accuracies than with null data based on relatively 
wide-spread connectivity patterns, the observed local differences are subtle with no significant 
univariate group differences in the link strengths after correcting for multiple comparisons. Our 
replication analysis revealed a number of weakly discriminative links that co-occurred with the most 
discriminative seed ROIs in the classification analysis. This suggest that the classification performance at 
larger spatial scales is likely driven by distributed patterns of small, but replicable connectivity changes. 
However, the lack of strong link-level effects or information on causal direction of functional 
connections limits the interpretability of the connectivity differences between groups. Moreover, the 
accuracies achieved with the connectivity-based machine learning approach varied relatively widely 
(from ~40 to over 90% in extreme cases) between repeated iterations of the same analysis pipeline with 
different assignments of training and test groups. This underlines the heterogeneity of the population 
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(there are effectively over 100 permissible symptom combinations, which would qualify for a DSM-
based clinical diagnosis; 38) and suggests that multiple classifications with random group splits are 
crucial for estimating the true expected accuracy and its variability in machine learning approaches 
employing resting state functional connectivity. To further evaluate the generalizability of our classifiers, 
we applied the classifiers trained on balanced subsets to the unseen, left out participants. These results 
were largely consistent with those attained in the smaller matched samples, but the accuracies were 
inflated by nuisance regression in the inner cross-validation data compared to the left-out sample. 
Moreover, when the inner cross-validation sizes increased, we observed a negative correlation of inner 
vs. outer cross-validation accuracies as the outer cross-validation sample was increasingly constrained 
and imbalances between participant samples were exacerbated by the limited left-out sample size 
(Figure 5A). While this is not the perfect solution for evaluating generalizability due to the reliance on 
the same limited and dependent sample, it should help in avoiding focusing on the peculiarities of a 
single cross-validation sample. Ideally, however, larger samples with entirely independent replication 
data should be preferred in future studies. Moreover, while the current results are promising, their 
applicability to cross-sectional data with realistic prevalence of BPD is very limited; when prevalence is 
low, the positive predictive power of the classification drops drastically as most of the positive findings 
are false positives merely because of the relative overrepresentation of the healthy (non-BPD) group. 
Thus, significant advances are still required for clinical applications. Additionally, preprocessing 
procedures, such as spatial smoothing and global signal regression as well as linear regression of 
nuisance covariates across participants may affect the classification accuracies depending on the scale of 
observation. Also, although in the currents study, all scanning sites used the same scanner model, the 
effects of different scanning sites can cause variance in multi-site studies that may be difficult to control 
fully.  Therefore, these effects should be carefully scrutinized in future studies. 

It is notable that with the different types of symptoms in BPD and large variance in age and education 
level, the assessed patients represented a very heterogeneous group and therefore very high accuracies 
are unlikely. Indeed, exceedingly high accuracies are a cause for suspicion of dependency problems or 
that the classifier is fitting noise (47). Importantly, finding robust patterns of connectivity abnormalities 
in psychiatric disorders has proven difficult. For example, a recent meta-analysis (48) found no 
reproducible functional connectivity differences over 99 studies of unipolar depression highlighting the 
importance of careful scrutiny of reliability of individual findings. To improve the situation, within-study 
replication and careful consideration of stability of findings seem crucial in the future. Indeed, the 
current findings suggest that functional connectivity effects of intelligence and BPD interact in non-
obvious ways as evidenced by the changes in global accuracy and correlations between group likelihood 
and RSPM scores due to nuisance regression.  

Global signal regression has raised considerable controversy, particularly in the field of resting state 
functional connectivity (38). On one hand, it has been argued to reflect confounding artifacts of motion 
and physiology. On the other hand, regressing out the global signal has been mathematically shown to 
induce negative correlations in the data (38). In the current study, global signal regression generally 
reduced accuracies, however, the effect was small and it was even reversed when only non-medicated 
patients were classified against healthy controls. It seems, therefore, that spatially specific effects of the 
global signal may moderately improve the discriminative power of resting state functional connectivity 
in the current data, at least when medicated patients are included in the analyses. A recent report also 
showed that spatially distinct patterns of brain regions contributing to the global signal are predictive of 
schizophrenia (49). In the current study, we excluded participants with excessive motion, regressed out 
the motion time courses as well as the volumes containing large spikes of motion, and signals from the 
white matter and cerebrospinal fluid to combat artefactual global signal changes, but admittedly linear 
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regression strategies do not perfectly remove all traces of these signals and they may still affect 
multivariate classification results. Therefore, the specific contributions of motion, cardiac and breathing 
rhythms and brain signals of interest should still be explored further in the future. 

The reason for observing higher accuracies for the “gold standard” SCID grouping strategy could be 
explained by real differences in brain connectivity in the excluded participants or mere technical issues 
due to different group sizes. To evaluate these options, we explored the classifier scores for the 
participants who were included in the Referral grouping, but were excluded from the SCID grouping, 
because the groupings were in other ways equivalent. The participants were excluded due to either not 
meeting diagnostic criteria (patients) or scoring over exclusion threshold using the SAPAS screening 
questionnaire for personality disorders (controls), suggesting that they might show intermediate 
connectivity patterns, in-between the two groups. We observed that the excluded participants were 
classified at chance level, thus explaining at least part of the lower accuracies in the Referral grouping. 
This tentatively supports the interpretation that the individuals not matching the criteria for either 
group exhibited brain connectivity patterns that were particularly difficult to classify as either BPD or 
control. Thus, it appears particularly important that the current diagnosis and symptoms are carefully 
confirmed before participants are included in such analyses, rather than relying on old diagnoses or self-
reports. However, the low number of excluded participants and other individual differences (e.g. in 
motion, brain size or education) preclude strong interpretation of the causes that made these 
individuals particularly difficult to classify. 

Importantly, in addition to group differences of interest, there are also other sources of variation in 
resting state functional connectivity. While the main source of variance seems to be due to individual 
factors (50), and intrinsic functional connectivity appears largely stable during rest and different 
audiovisual stimulation conditions (51), the test-retest reliability is not perfect and depends on the 
specific brain regions and the amount of available data (52), and moderate individual–task interactions 
may also exist (50). Reliability might be improved in future studies by providing the participants with an 
attention-inducing naturalistic stimulus, which appears to reduce participants’ motion (53), at least in 
children. Moreover, an engaging stimulus may reduce the intraindividual variability of connectivity 
between subsequent measurements, which during resting state measurements could arise due to 
unconstrained, idiosyncratic patterns of thought. Reducing this unwanted variability could potentially 
even accentuate intergroup variability (for discussion and conceptual demonstration, see (54)). 

A significant limitation for the specificity of the current findings is the lack of other clinical groups in 
addition to BPD in our sample. Specifically, the general level of psychopathology, sometimes referred to 
as the “p-factor”, appears to affect largely similar brain regions that were predictive of BPD in the 
current study (55). Moreover, the current study did not include a thorough diagnosis of comorbid 
psychiatric disorders, which may further blur the line between disorders. Thus, the findings presented 
here could be disorder-general rather than specific to BPD. A recent reanalysis of two large 
representative surveys of US adults (56) confirmed the general psychopathology factor across 
psychopathologies. In particular, latent BPD was found to closely reflect the general psychopathology 
factor and could even be considered a unitary construct rather than two separate entities. Thus, 
identifying unique mechanism for BPD could enable better understanding of the nature of general 
psychopathology. However, disentangling signals unique to BPD that are not associated with severity 
other psychopathologies appears challenging due to the strong association with p factor and BPD. It is, 
thus, crucial that future analyses extend the current findings in transdiagnostic samples, which is 
becoming increasingly feasible due to large-scale projects like the UK Biobank. Moreover, categorical 
comparisons between heterogeneous psychiatric disorder labels, although efficient in clinical practice 
using traditional diagnostic tools, may not be the most appropriate way of evaluating the brain 
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mechanisms of psychiatric symptoms, which may be better understood by dimensional approaches to 
psychopathology. In the current case, we explored only self-reported symptoms, which in this case 
appeared to be weaker predictors of connectivity than categorical classification based on the SCID 
interview. High interrater reliabilities (Cronbach’s Kappa ≥ 0.89) have generally been reported for the 
SCID interview, although some studies or study sites have produced lower reliabilities both between 
raters and in test-retest evaluations (57). However, more objective and reliable dimensional models of 
psychopathology may be particularly fruitful for elucidating the interindividual variability both within 
and between categorical diagnostic labels. 

Due to the large number of comparisons, we have here limited the machine learning methods to only 
simple linear SVM classifiers. A different choice of classifier could also have been more successful at 
detecting subtle differences in regions not highlighted by the current methodology. Here, we chose a 
simple linear classifier to limit problems with overfitting in high-dimensional data that a non-linear 
classifier could be more susceptible to, given the limited sample size. However, a non-linear classifier 
could be more sensitive to effects that are not accessible to linear methods. Potentially, also optimizing 
the hyperparameters of the current model could also have improved the performance. Future studies 
should further explore the optimal choices of machine learning methods and associated parameters for 
clinical prediction of BPD, including both continuous regression and categorical classification methods, 
preferably in a large transdiagnostic sample. 

Finally, medications may confound the interpretation of the results in studies on patients with disorders 
such as BPD, who are often on at least one medication affecting the central nervous system. In the 
current study, we repeated the analyses on a subset of patients with no current medication. We 
observed a slightly reduced accuracy specifically in analyses employing data without global signal 
regression – an effect that was reversed in the data where global signals were regressed out. This might 
suggest that the drugs taken by the patient group (mainly antidepressant and antipsychotic medication) 
may cause global connectivity differences that inflate predictive performance of classifiers based on 
connectivity. However, it is unclear whether this effect is due to neural signals or is driven by random 
variability. For example, differences in physiological signals or motion that was not removed by the 
motion regression and data exclusion procedures. Moreover, additional investigations are required to 
confirm this observation because we cannot rule out alternative explanations, such as other 
characteristics of the unmedicated vs. medicated patient samples or the smaller pool of healthy controls 
that might have contributed to the differences in the accuracies. 

Conclusions 
Our results demonstrate that widespread functional connectivity patterns reliably discriminate between 
BPD and control participants. However, only a subset of these regions were consistently able to classify 
patients irrespective of medication as well as group selection and preprocessing strategies suggesting 
considerable heterogeneity in the patient population that may be related to the current or past use of 
medications and symptom differences. Importantly, the classification results generalized to unbalanced 
left-out participants. However, the specificity of these finding should be further evaluated in relation to 
other psychiatric disorders. Local link-level differences showed only weak differences between groups, 
which did not survive corrections for multiple comparisons. Our replication analysis further suggests 
that only a small minority of these effects were likely to replicate and a subset even showed significant 
opposite effects, which may explain the lack of consensus in the previous literature. Therefore, it is 
imperative that the reliability of observations is carefully scrutinized and larger, well-characterized 
samples including multiple patient groups are favored in future studies to avoid discrepant findings and 
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over-interpretation of the spatial patterns of functional differences associated with psychiatric 
disorders. 
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Supplementary materials 
 

 

Supplementary Figure 1: Dependence of specificity, sensitivity and accuracy over 5000 iterations of the linear 
classification based on global connectivity structure with different preprocessing strategies.  The distributions are 
depicted as the normalized log frequencies in 2-dimensional binned histograms. Specificity and sensitivity are both 
correlated with the overall accuracy. During most iterations specificity and sensitivity also both are near 70%, as 
evidenced by the peak location of the joint distribution, and the correlations between the two are low. 
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Supplementary Table 1: Accuracies and MNI coordinates ROIs in seed-based ROI classification. 

 MNI Coordinates Classification accuracy 

Region label X Y Z SCID II Referral PAI-BOR 

1 SFG_L_7_1 -2.11 18.38 56.99    

2 SFG_R_7_1 9.50 19.26 57.20 
   

3 SFG_L_7_2 -15.55 26.76 55.65 0.629     

4 SFG_R_7_2 24.48 28.45 54.59 0.688 
  

5 SFG_L_7_3 -8.58 52.25 42.38 0.631     

6 SFG_R_7_3 15.72 51.52 43.15 0.633 0.588 
 

7 SFG_L_7_4 -15.51 2.30 68.01 0.629     

8 SFG_R_7_4 22.91 7.09 67.18 
   

9 SFG_L_7_5 -3.30 -2.14 60.84       

10 SFG_R_7_5 10.08 -0.95 63.17 
   

11 SFG_L_7_6 -1.89 39.41 41.10       

12 SFG_R_7_6 8.83 41.47 38.07 0.619 0.603 
 

13 SFG_L_7_7 -4.62 59.63 18.00       

14 SFG_R_7_7 10.63 61.73 15.74 0.618 
  

15 MFG_L_7_1 -25.01 46.03 33.82       

16 MFG_R_7_1 33.14 40.30 38.74 
   

17 MFG_L_7_2 -39.28 16.36 39.22 0.591     

18 MFG_R_7_2 45.19 14.51 41.51 0.599 
  

19 MFG_L_7_3 -25.48 59.39 14.59   0.593   

20 MFG_R_7_3 30.66 58.56 19.56 
  

0.607 

21 MFG_L_7_4 -38.28 44.48 18.73       

22 MFG_R_7_4 44.91 47.71 16.24 
   

23 MFG_L_7_5 -30.52 26.24 48.21 0.605     

24 MFG_R_7_5 44.93 30.07 41.87 
   

25 MFG_L_7_6 -29.94 6.85 57.55 0.592     

26 MFG_R_7_6 36.59 10.89 57.60 
   

27 MFG_L_7_7 -22.53 64.10 -2.87       

28 MFG_R_7_7 28.58 64.83 -1.25 
   

29 IFG_L_6_1 -43.35 16.65 26.59       

30 IFG_R_6_1 48.78 19.82 27.99 
   

31 IFG_L_6_2 -45.23 35.41 16.30 0.615     

32 IFG_R_6_2 51.10 38.68 15.66 
   

33 IFG_L_6_3 -50.26 26.37 13.51 0.690 0.625 0.590 

34 IFG_R_6_3 57.19 26.94 13.96 
   

35 IFG_L_6_4 -46.53 39.69 0.05       

36 IFG_R_6_4 54.28 39.62 2.11 
   

37 IFG_L_6_5 -36.94 25.64 6.54 0.588     

38 IFG_R_6_5 44.75 24.87 6.17 0.614 
  

39 IFG_L_6_6 -49.32 16.81 8.83       
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40 IFG_R_6_6 56.45 16.71 13.15 
   

41 OrG_L_6_1 -3.59 57.31 -4.26 0.641     

42 OrG_R_6_1 9.16 50.58 -4.72 
   

43 OrG_L_6_2 -33.77 36.46 -13.36 0.642     

44 OrG_R_6_2 43.20 42.01 -11.82 0.599 
  

45 OrG_L_6_3 -19.81 40.89 -15.39       

46 OrG_R_6_3 26.26 39.35 -15.88 
   

47 OrG_L_6_4 -3.29 55.32 -17.20       

48 OrG_R_6_4 9.10 59.63 -14.58 
   

49 OrG_L_6_5 -7.49 20.50 -16.48       

50 OrG_R_6_5 11.99 23.32 -17.23 
   

51 OrG_L_6_6 -38.68 35.89 -6.79 0.604     

52 OrG_R_6_6 45.63 34.86 -6.41 
   

53 PrG_L_6_1 -46.49 -4.84 41.90       

54 PrG_R_6_1 57.69 0.39 35.93 
   

55 PrG_L_6_2 -29.19 -6.19 60.84       

56 PrG_R_6_2 36.17 -3.76 59.42 0.694 0.607 
 

57 PrG_L_6_3 -23.93 -22.03 65.78 0.609     

58 PrG_R_6_3 37.10 -15.92 61.80 
   

59 PrG_L_6_4 -10.93 -17.66 76.01 0.633     

60 PrG_R_6_4 18.17 -18.81 73.85 0.596 
  

61 PrG_L_6_5 -49.90 3.31 10.43 0.606     

62 PrG_R_6_5 56.62 6.95 11.74 
   

63 PrG_L_6_6 -46.74 7.56 33.44       

64 PrG_R_6_6 54.14 10.06 33.70 
   

65 PCL_L_2_1 -4.87 -35.45 61.74       

66 PCL_R_2_1 12.78 -31.67 57.02 0.629 
 

0.638 

67 PCL_L_2_2 -1.32 -19.93 63.75 0.624 0.593   

68 PCL_R_2_2 7.59 -18.07 64.40 
   

69 STG_L_6_1 -29.43 16.90 -32.34       

70 STG_R_6_1 34.33 18.34 -31.53 
   

71 STG_L_6_2 -51.64 -28.73 14.84       

72 STG_R_6_2 57.18 -20.69 13.35 0.597 
  

73 STG_L_6_3 -47.57 -8.10 4.15 0.627 0.612   

74 STG_R_6_3 53.88 -0.67 1.51 0.595 
  

75 STG_L_6_4 -59.99 -30.02 9.60 0.606     

76 STG_R_6_4 69.36 -17.08 8.66 
   

77 STG_L_6_5 -42.59 14.31 -17.25 0.638 0.598   

78 STG_R_6_5 50.12 15.64 -17.28 
   

79 STG_L_6_6 -52.53 -0.22 -7.91 0.624 0.625 0.591 

80 STG_R_6_6 59.45 -9.00 -2.51 
   

81 MTG_L_4_1 -63.02 -26.95 -9.12 0.628     

82 MTG_R_4_1 68.01 -25.54 -10.87 
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83 MTG_L_4_2 -50.88 5.22 -27.22 0.591     

84 MTG_R_4_2 54.32 8.71 -29.66 0.663 
  

85 MTG_L_4_3 -56.69 -54.86 7.01 0.605 0.602   

86 MTG_R_4_3 63.27 -50.85 5.34 0.588 
  

87 MTG_L_4_4 -56.15 -16.60 -7.10 0.604     

88 MTG_R_4_4 61.13 -13.08 -7.35 
   

89 ITG_L_7_1 -43.05 -23.15 -24.95       

90 ITG_R_7_1 48.90 -11.21 -30.62 
   

91 ITG_L_7_2 -48.79 -54.61 -12.49 0.595 0.601   

92 ITG_R_7_2 56.33 -50.06 -15.77 0.597 
  

93 ITG_L_7_3 -41.18 0.74 -38.98       

94 ITG_R_7_3 43.89 3.41 -40.55 
   

95 ITG_L_7_4 -53.56 -12.66 -25.02       

96 ITG_R_7_4 57.78 -8.04 -29.97 
   

97 ITG_L_7_5 -52.90 -57.51 -3.10 0.614     

98 ITG_R_7_5 57.03 -54.29 -5.67 
   

99 ITG_L_7_6 -57.02 -39.18 -13.41       

100 ITG_R_7_6 63.92 -37.21 -14.85 
   

101 ITG_L_7_7 -52.39 -28.09 -24.54       

102 ITG_R_7_7 56.57 -28.77 -23.38 
   

103 FuG_L_3_1 -30.33 -13.98 -29.41       

104 FuG_R_3_1 36.48 -12.05 -31.23 
   

105 FuG_L_3_2 -28.48 -62.37 -11.70 0.603     

106 FuG_R_3_2 34.06 -58.92 -11.08 0.624 
  

107 FuG_L_3_3 -39.76 -47.43 -15.06       

108 FuG_R_3_3 45.45 -46.55 -16.26 
   

109 PhG_L_6_1 -24.66 -4.25 -31.77       

110 PhG_R_6_1 30.81 -5.32 -30.98 0.662 
  

111 PhG_L_6_2 -22.12 -22.58 -23.47 0.596     

112 PhG_R_6_2 29.33 -20.40 -24.49 0.619 
  

113 PhG_L_6_3 -25.85 -28.67 -15.72 0.659 0.592   

114 PhG_R_6_3 32.87 -26.73 -15.72 
   

115 PhG_L_6_4 -16.17 -9.45 -27.53       

116 PhG_R_6_4 21.95 -8.35 -26.92 
   

117 PhG_L_6_5 -21.04 4.97 -29.49       

118 PhG_R_6_5 24.70 4.00 -33.76 
   

119 PhG_L_6_6 -14.48 -36.74 -7.28       

120 PhG_R_6_6 21.95 -33.58 -8.90 
   

121 pSTS_L_2_1 -52.21 -37.20 6.75 0.619     

122 pSTS_R_2_1 55.74 -34.17 6.09 0.605 
  

123 pSTS_L_2_2 -50.06 -47.53 13.41 0.674 0.594   

124 pSTS_R_2_2 59.87 -37.37 15.44 
   

125 SPL_L_5_1 -13.65 -57.26 65.59 0.679     
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126 SPL_R_5_1 22.32 -54.18 67.92 0.601 0.596 
 

127 SPL_L_5_2 -12.73 -68.49 54.62 0.605     

128 SPL_R_5_2 21.52 -66.40 56.53 0.605 
  

129 SPL_L_5_3 -30.65 -44.48 52.56 0.587     

130 SPL_R_5_3 38.05 -39.06 56.97 
   

131 SPL_L_5_4 -19.95 -44.77 68.16 0.624     

132 SPL_R_5_4 26.09 -40.26 69.83 0.587 
  

133 SPL_L_5_5 -24.87 -56.58 56.70 0.633     

134 SPL_R_5_5 34.15 -51.36 56.13 0.613 
  

135 IPL_L_6_1 -31.70 -77.89 31.63 0.624     

136 IPL_R_6_1 48.42 -68.88 23.22 0.588 
  

137 IPL_L_6_2 -35.48 -58.52 49.33       

138 IPL_R_6_2 42.38 -62.65 46.37 0.617 
  

139 IPL_L_6_3 -48.76 -30.62 44.45       

140 IPL_R_6_3 50.30 -32.32 48.21 
   

141 IPL_L_6_4 -53.50 -46.73 40.17       

142 IPL_R_6_4 60.33 -40.89 41.03 
   

143 IPL_L_6_5 -44.18 -62.55 28.80 0.636     

144 IPL_R_6_5 56.08 -51.81 27.55 0.595 
  

145 IPL_L_6_6 -51.02 -28.45 25.28 0.676     

146 IPL_R_6_6 58.18 -23.21 28.25 0.612 
  

147 Pcun_L_4_1 -2.25 -60.95 54.00 0.644     

148 Pcun_R_4_1 8.94 -62.45 53.86 0.696 0.601 
 

149 Pcun_L_4_2 -5.14 -44.69 60.07       

150 Pcun_R_4_2 10.33 -44.47 61.55 0.606 
 

0.602 

151 Pcun_L_4_3 -9.19 -64.11 28.26       

152 Pcun_R_4_3 19.29 -61.10 27.22 0.636 
  

153 Pcun_L_4_4 -3.34 -52.07 36.48 0.614   0.623 

154 Pcun_R_4_4 9.35 -51.31 37.46 
  

0.591 

155 PoG_L_4_1 -47.18 -13.82 46.23       

156 PoG_R_4_1 52.59 -11.72 47.35 
   

157 PoG_L_4_2 -53.22 -11.23 19.04       

158 PoG_R_4_2 58.90 -6.87 17.47 
   

159 PoG_L_4_3 -43.48 -27.02 52.62 0.612     

160 PoG_R_4_3 51.89 -20.68 50.57 
   

161 PoG_L_4_4 -19.03 -31.94 71.33       

162 PoG_R_4_4 23.04 -29.65 72.90 0.651 
  

163 INS_L_6_1 -33.95 -16.89 11.80       

164 INS_R_6_1 40.70 -14.67 10.42 
   

165 INS_L_6_2 -29.60 17.42 -10.27 0.631 0.591   

166 INS_R_6_2 35.98 17.78 -10.24 
   

167 INS_L_6_3 -31.93 20.27 3.82 0.605 0.620   

168 INS_R_6_3 39.74 21.04 3.07 0.644 0.588 
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169 INS_L_6_4 -35.82 -1.27 -6.53       

170 INS_R_6_4 42.20 0.67 -6.60 
   

171 INS_L_6_5 -36.26 -4.79 10.93       

172 INS_R_6_5 42.22 -3.80 10.11 
   

173 INS_L_6_6 -35.87 8.24 6.42 0.591     

174 INS_R_6_6 41.19 8.41 7.45 
   

175 CG_L_7_1 -1.25 -36.64 33.88     0.590 

176 CG_R_7_1 7.13 -33.65 34.27 0.615 
  

177 CG_L_7_2 -0.92 12.34 26.94       

178 CG_R_7_2 7.54 24.61 15.17 
   

179 CG_L_7_3 -2.84 37.60 23.17       

180 CG_R_7_3 8.21 30.74 30.29 0.597 0.588 
 

181 CG_L_7_4 -5.84 -44.73 12.02 0.660     

182 CG_R_7_4 11.47 -40.37 14.26 0.633 0.593 0.593 

183 CG_L_7_5 -1.91 10.45 39.86 0.606     

184 CG_R_7_5 7.00 9.19 40.95 
   

185 CG_L_7_6 -4.79 -20.14 43.74 0.610     

186 CG_R_7_6 9.20 -17.03 43.31 
   

187 CG_L_7_7 -1.64 42.09 0.55 0.622     

188 CG_R_7_7 8.11 44.10 8.90 
  

0.597 

189 Cun_L_5_1 -8.05 -79.94 -8.25 0.588 0.613   

190 Cun_R_5_1 13.26 -83.08 -6.11 
   

191 Cun_L_5_2 -2.04 -78.53 12.89   0.608   

192 Cun_R_5_2 10.09 -73.28 13.81 
 

0.654 
 

193 Cun_L_5_3 -2.84 -92.02 3.81 0.663     

194 Cun_R_5_3 11.60 -87.33 14.94 0.668 0.613 
 

195 Cun_L_5_4 -13.46 -58.05 -4.12       

196 Cun_R_5_4 20.78 -57.18 -4.47 
   

197 Cun_L_5_5 -10.39 -65.87 14.69 0.591     

198 Cun_R_5_5 17.28 -60.79 14.83 
   

199 OcG_L_4_1 -28.41 -86.73 13.47 0.597     

200 OcG_R_4_1 37.30 -83.59 13.37 0.709 
  

201 OcG_L_4_2 -43.53 -71.33 5.73       

202 OcG_R_4_2 50.94 -67.67 2.01 
   

203 OcG_L_4_3 -15.41 -97.07 5.22 0.603     

204 OcG_R_4_3 25.20 -94.87 7.12 
   

205 OcG_L_4_4 -27.69 -85.66 -9.83 0.662 0.590   

206 OcG_R_4_4 35.23 -82.16 -8.97 0.641 
  

207 sOcG_L_2_1 -8.16 -85.81 33.25       

208 sOcG_R_2_1 19.23 -82.78 37.54 
   

209 sOcG_L_2_2 -19.59 -74.78 39.06 0.588 0.596   

210 sOcG_R_2_2 31.73 -71.97 38.78 0.659 
  

211 Amyg_L_2_1 -15.88 0.64 -17.15 0.612     
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212 
Amyg_R_2_1 

22.25 0.52 -16.68 
   

213 Amyg_L_2_2 -24.76 -1.16 -17.56 0.599     

214 
Amyg_R_2_2 

30.73 -0.47 -16.80 
   

215 Hipp_L_2_1 -19.28 -10.60 -16.66 0.653     

216 Hipp_R_2_1 24.68 -9.24 -17.99 0.603 
  

217 Hipp_L_2_2 -25.06 -27.30 -7.35 0.629   0.589 

218 Hipp_R_2_2 32.39 -24.09 -7.95 
   

219 Str_L_6_1 -9.47 17.61 2.14 0.601     

220 Str_R_6_1 17.69 18.02 0.15 
   

221 Str_L_6_2 -20.28 0.87 6.44       

222 Str_R_6_2 24.81 0.77 5.73 0.667 
  

223 Str_L_6_3 -14.55 6.43 -6.70 0.600     

224 Str_R_6_3 18.07 9.10 -6.08 
   

225 Str_L_6_4 -20.17 9.78 -0.69 0.638     

226 Str_R_6_4 25.12 10.40 0.67 
   

227 Str_L_6_5 -12.61 4.63 18.72       

228 Str_R_6_5 16.89 8.40 17.43 
   

229 Str_L_6_6 -26.49 -2.51 4.02       

230 Str_R_6_6 32.90 -0.52 3.61 0.626 0.593 
 

231 Tha_L_8_1 -3.82 -9.20 7.67   0.588 0.594 

232 Tha_R_8_1 9.47 -8.53 8.35 
 

0.635 
 

233 Tha_L_8_2 -15.69 -10.36 5.52 0.606 0.597   

234 Tha_R_8_2 15.46 -10.57 3.76 
   

235 Tha_L_8_3 -14.64 -20.05 6.32 0.605     

236 Tha_R_8_3 20.68 -18.52 5.88 0.626 
  

237 Tha_L_8_4 -3.27 -10.55 9.65   0.605   

238 Tha_R_8_4 5.39 -10.40 8.38 
 

0.602 
 

239 Tha_L_8_5 -13.41 -21.58 8.99 0.604   0.607 

240 Tha_R_8_5 18.27 -22.51 8.78 0.600 
 

0.603 

241 Tha_L_8_6 -12.28 -24.88 6.73       

242 Tha_R_8_6 15.70 -24.31 10.44 
   

243 Tha_L_8_7 -8.64 -18.58 15.64       

244 Tha_R_8_7 12.44 -11.34 16.89 0.590 
  

245 Tha_L_8_8 -8.78 -11.84 5.18       

246 Tha_R_8_8 14.75 -12.79 8.98 
  

0.614 

247 Cer_L_9 -4.75 -42.65 -14.56       

248 Cer_R_9 11.32 -41.61 -15.59 
   

249 Cer_L_9 -10.60 -48.69 -16.16     0.597 

250 Cer_R_9 15.82 -49.24 -16.48 0.622 
  

251 Cer_L_9 -20.51 -57.13 -22.53       

252 Cer_V_9 2.59 -68.46 -18.95 
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253 Cer_R_9 26.29 -56.32 -22.76 0.606     

254 Cer_L_9 -33.71 -66.56 -29.68 0.697 0.615 
 

255 Cer_R_9 39.22 -65.67 -29.51 0.687 0.598   

256 Cer_L_9 -23.95 -73.39 -39.90 
   

257 Cer_V_9 2.57 -72.68 -29.06 0.591     

258 Cer_R_9 28.19 -73.92 -38.98 
   

259 Cer_L_9 -23.94 -64.66 -48.99       

260 Cer_V_9 1.22 -66.00 -29.11 
   

261 Cer_R_9 30.03 -64.10 -48.63       

262 Cer_L_9 -22.10 -55.81 -50.97 
   

263 Cer_V_9 2.27 -65.18 -35.96       

264 Cer_R_9 27.53 -56.44 -51.16 
   

265 Cer_L_9 -14.94 -48.56 -52.65       

266 Cer_V_9 1.90 -61.37 -39.51 0.595 
  

267 Cer_R_9 19.72 -49.25 -52.74       

268 Cer_L_9 -4.66 -51.67 -46.09 0.619 
  

269 Cer_V_9 1.90 -53.70 -35.76 0.646     

270 Cer_R_9 8.60 -51.75 -46.65 
   

271 Cer_L_9 -19.09 -34.44 -43.32 0.642     

272 Cer_V_9 2.58 -46.06 -33.23 
   

273 Cer_R_9 23.85 -35.06 -43.58     0.591 
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Supplementary Table 2: Mean accuracies for global classification at different levels of motion matching 

Training sample=20/group 

Mot. levels Inner Outer Inner reg. Outer reg. 

1 r=0.657, p=0.0000* r=0.626, p=0.0050* r=0.697, p=0.0000* r=0.616, p=0.0100* 

2 r=0.610, p=0.0300* r=0.650, p=0.0000* r=0.656, p=0.0000* r=0.633, p=0.0050* 

3 r=0.616, p=0.0200* r=0.633, p=0.0100* r=0.663, p=0.0000* r=0.633, p=0.0100* 

4 r=0.621, p=0.0150* r=0.620, p=0.0150* r=0.669, p=0.0050* r=0.615, p=0.0150* 

5 r=0.622, p=0.0050* r=0.622, p=0.0050* r=0.645, p=0.0000* r=0.624, p=0.0050* 

 

Training sample=25/group 

Mot. levels Inner Outer Inner reg. Outer reg. 

1 r=0.675, p=0.0050* r=0.628, p=0.0100* r=0.701, p=0.0000* r=0.622, p=0.0100* 

2 r=0.614, p=0.0350* r=0.663, p=0.0000* r=0.667, p=0.0000* r=0.657, p=0.0050* 

3 r=0.623, p=0.0250* r=0.643, p=0.0150* r=0.683, p=0.0000* r=0.655, p=0.0050* 

4 r=0.633, p=0.0050* r=0.633, p=0.0050* r=0.672, p=0.0000* r=0.631, p=0.0050* 

5 r=0.631, p=0.0350* r=0.636, p=0.0150* r=0.639, p=0.0150* r=0.638, p=0.0150* 

 

Training sample=30/group 

Mot. levels Inner Outer Inner reg. Outer reg. 

1 r=0.685, p=0.0000* r=0.620, p=0.0050* r=0.699, p=0.0000* r=0.614, p=0.0050* 

2 r=0.615, p=0.0350* r=0.684, p=0.0000* r=0.667, p=0.0000* r=0.679, p=0.0000* 

3 r=0.640, p=0.0050* r=0.657, p=0.0050* r=0.698, p=0.0000* r=0.666, p=0.0000* 

4 r=0.641, p=0.0100* r=0.638, p=0.0100* r=0.680, p=0.0050* r=0.641, p=0.0100* 

5 r=0.646, p=0.0200* r=0.648, p=0.0200* r=0.651, p=0.0100* r=0.649, p=0.0100* 

 

Training sample=35/group 

Mot. levels Inner Outer Inner reg. Outer reg. 

1 r=0.688, p=0.0000* r=0.614, p=0.0300* r=0.704, p=0.0000* r=0.603, p=0.0450* 

2 r=0.625, p=0.0150* r=0.700, p=0.0050* r=0.662, p=0.0050* r=0.695, p=0.0050* 

3 r=0.645, p=0.0100* r=0.660, p=0.0050* r=0.699, p=0.0000* r=0.670, p=0.0000* 

4 r=0.654, p=0.0000* r=0.639, p=0.0100* r=0.683, p=0.0000* r=0.645, p=0.0100* 

5 r=0.656, p=0.0150* r=0.653, p=0.0150* r=0.646, p=0.0150* r=0.658, p=0.0150* 
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Supplementary table 3: Motion vs. SVM score correlations at different levels of motion matching 

Training sample=20/group 

Mot. levels Inner Outer Inner reg. Outer reg. Null 

1 r=-0.224, 
p=0.1651 

r=-0.230, 
p=0.1532 

r=-0.113, 
p=0.4887 

r=-0.209, 
p=0.1967 

r=0.016, 
p=0.9230 

2 r=-0.072, 
p=0.6573 

r=-0.139, 
p=0.3939 

r=0.002, 
p=0.9879 

r=-0.090, 
p=0.5827 

r=-0.002, 
p=0.9909 

3 r=-0.021, 
p=0.8990 

r=-0.085, 
p=0.6035 

r=0.053, 
p=0.7441 

r=-0.079, 
p=0.6287 

r=-0.006, 
p=0.9720 

4 r=0.078, 
p=0.6311 

r=0.014, 
p=0.9338 

r=0.119, 
p=0.4641 

r=-0.033, 
p=0.8382 

r=0.004, 
p=0.9814 

5 r=0.002, 
p=0.9906 

r=-0.027, 
p=0.8683 

r=0.174, 
p=0.2839 

r=-0.073, 
p=0.6538 

r=0.012, 
p=0.9403 

Training sample=25/group 

Mot. levels Inner Outer Inner reg. Outer reg. Null 

1 r=-0.223, 
p=0.1671 

r=-0.254, 
p=0.1131 

r=-0.123, 
p=0.4493 

r=-0.240, 
p=0.1361 

r=-0.020, 
p=0.9048 

2 r=-0.092, 
p=0.5713 

r=-0.166, 
p=0.3066 

r=0.015, 
p=0.9273 

r=-0.107, 
p=0.5093 

r=-0.005, 
p=0.9755 

3 r=-0.028, 
p=0.8635 

r=-0.099, 
p=0.5436 

r=0.054, 
p=0.7405 

r=-0.088, 
p=0.5888 

r=0.009, 
p=0.9546 

4 r=0.057, 
p=0.7268 

r=0.020, 
p=0.9019 

r=0.157, 
p=0.3323 

r=-0.032, 
p=0.8443 

r=0.008, 
p=0.9613 

5 r=0.001, 
p=0.9953 

r=-0.045, 
p=0.7812 

r=0.178, 
p=0.2716 

r=-0.089, 
p=0.5844 

r=-0.007, 
p=0.9641 

Training sample=30/group 

Mot. levels Inner Outer Inner reg. Outer reg. Null 

1 r=-0.241, 
p=0.1339 

r=-0.259, 
p=0.1071 

r=-0.112, 
p=0.4909 

r=-0.254, 
p=0.1136 

r=0.001, 
p=0.9971 

2 r=-0.098, 
p=0.5477 

r=-0.175, 
p=0.2811 

r=0.013, 
p=0.9377 

r=-0.102, 
p=0.5315 

r=0.015, 
p=0.9244 

3 r=-0.036, 
p=0.8276 

r=-0.117, 
p=0.4716 

r=0.062, 
p=0.7022 

r=-0.090, 
p=0.5818 

r=-0.001, 
p=0.9968 

4 r=0.070, 
p=0.6686 

r=0.012, 
p=0.9402 

r=0.141, 
p=0.3859 

r=-0.044, 
p=0.7894 

r=-0.000, 
p=0.9980 

5 r=0.008, 
p=0.9594 

r=-0.044, 
p=0.7896 

r=0.191, 
p=0.2373 

r=-0.106, 
p=0.5145 

r=-0.014, 
p=0.9311 

Training sample=35/group 

Mot. levels Inner Outer Inner reg. Outer reg. Null 

1 r=-0.255, 
p=0.1119 

r=-0.284, 
p=0.0759 

r=-0.122, 
p=0.4536 

r=-0.276, 
p=0.0845 

r=-0.004, 
p=0.9789 

2 r=-0.107, 
p=0.5112 

r=-0.197, 
p=0.2239 

r=0.028, 
p=0.8626 

r=-0.103, 
p=0.5270 

r=-0.003, 
p=0.9837 

3 r=-0.028, 
p=0.8655 

r=-0.119, 
p=0.4659 

r=0.085, 
p=0.6012 

r=-0.076, 
p=0.6427 

r=0.012, 
p=0.9410 

4 r=0.074, 
p=0.6483 

r=0.024, 
p=0.8840 

r=0.156, 
p=0.3356 

r=-0.024, 
p=0.8851 

r=-0.010, 
p=0.9532 

5 r=0.001, 
p=0.9949 

r=-0.063, 
p=0.6984 

r=0.200, 
p=0.2149 

r=-0.138, 
p=0.3956 

r=0.019, 
p=0.9064 

 


