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A B S T R A C T   

Background: Functional connectivity has garnered interest as a potential biomarker of psychiatric disorders 
including borderline personality disorder (BPD). However, small sample sizes and lack of within-study replica-
tions have led to divergent findings with no clear spatial foci. 
Aims: Evaluate discriminative performance and generalizability of functional connectivity markers for BPD. 
Method: Whole-brain fMRI resting state functional connectivity in matched subsamples of 116 BPD and 72 
control individuals defined by three grouping strategies. We predicted BPD status using classifiers with repeated 
cross-validation based on multiscale functional connectivity within and between regions of interest (ROIs) 
covering the whole brain—global ROI-based network, seed-based ROI-connectivity, functional consistency, and 
voxel-to-voxel connectivity—and evaluated the generalizability of the classification in the left-out portion of non- 
matched data. 
Results: Full-brain connectivity allowed classification (~70 %) of BPD patients vs. controls in matched inner 
cross-validation. The classification remained significant when applied to unmatched out-of-sample data 
(~61–70 %). Highest seed-based accuracies were in a similar range to global accuracies (~70–75 %), but 
spatially more specific. The most discriminative seed regions included midline, temporal and somatomotor re-
gions. Univariate connectivity values were not predictive of BPD after multiple comparison corrections, but weak 
local effects coincided with the most discriminative seed-ROIs. Highest accuracies were achieved with a full 
clinical interview while self-report results remained at chance level. 
Limitations: The accuracies vary considerably between random sub-samples of the population, global signal and 
covariates limiting the practical applicability. 
Conclusions: Spatially distributed functional connectivity patterns are moderately predictive of BPD despite 
heterogeneity of the patient population.  
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1. Introduction 

Impaired social interactions are a central characteristic of personal-
ity disorders (Schilbach, 2016). Borderline personality disorder (BPD) 
has been empirically characterized by profound social deficits, with 
patients notably suffering from dysfunctional relationships (Fonagy and 
Luyten, 2009). Core clinical features of BPD include affective dysregu-
lation (Reisch et al., 2008), impulsivity (Grootens et al., 2008), height-
ened risk for self-harm and suicidality (Black et al., 2004), relational 
instability and hypervigilance to motives of others in close relationships 
(Fonagy and Allison, 2014) and a bias in attributing hostility to others 
(Critchfield et al., 2007). The core of patients’ difficulties has been 
suggested to lie with an inability to imagine and thus perceive and 
interpret human behaviour in terms of underlying mental states (Allen 
et al., 2008; Euler et al., 2019). These social cognitive impairments may 
reflect changes in the capacity to understand the internal states of self 
and others and respond to implicit trust gestures (Debbané and Nolte, 
2019; Nolte et al., 2023). This may be particularly relevant for BPD as a 
developmental psychopathology, for which early adversity and disor-
ganized attachment relationships have been established as critical 
contributing factors. A cascade of deteriorating disease states in patients 
is often provoked by heightened interpersonal stress/threat (e.g. rejec-
tion, abandonment, or isolation) accompanied by a reduced sense of 
agency and a resulting propensity to react (Fonagy and Luyten, 2009; 
Nolte et al., 2019). While there is accumulating evidence that symptoms 
such as emotional dysregulation are associated with functional and 
structural differences in frontal and limbic regions (Herpertz et al., 
2018; Schulze et al., 2016), relatively few studies have examined resting 
state functional connectivity differences in BPD. Some studies have re-
ported connectivity increases while others have reported seed region- 
specific decreases, with the overall effect sizes being small and 
spatially scattered (Krause-Utz and Schmahl, 2016; Lei et al., 2018; 
O’Neill et al., 2015; Quattrini et al., 2019; Salvador et al., 2016; Wolf, 
2011). Other approaches have been proposed to evaluate brain con-
nectivity differences, e.g. anatomical connectivity based on diffusion 
tensor imaging. These have suggested mainly reduced fractional 
anisotropy (FA) values in BPD, although the specific tracts appear to 
differ from study to study. One study found reduced FA values in the 
inferior longitudinal, uncinate and occipitofrontal fasciculi (New et al., 
2013), in adolescent but not adult participants. Another study tested the 
fractional anisotropy (FA) only in the uncinate and cingulum, finding 
decreased FA values in BPD sample compared to controls in the uncinate 
and not in the cingulum. By contrast, two further studies did find effects 
in the cingulum (Goldstein et al., 2019; Ninomiya et al., 2018) and, in 
the case of one of the studies, not in the uncinate fasciculus (Ninomiya 
et al., 2018). A small meta-analysis of four studies also showed support 
for decreased FA values in BPD localized in the corpus callosum and the 
fornix (Kelleher-Unger et al., 2021). Some further studies have produced 
high accuracies and effect sizes based on other measures, such as BOLD 
power at specific frequency bands or network analysis techniques (Xu 
et al., 2016), but like most other studies to date, they have relied on 
small samples and the findings have not yet been replicated. Therefore, 
there is a concerning lack of consensus on whether, or in which ways, 
BPD may be characterized by aberrations in brain connectivity. 

An important limitation of prior functional connectivity studies of 
BPD has been the small sample size, usually approximately 20 patients 
in the studies cited above, although some studies with double the 
number of subjects exist (Baczkowski et al., 2017; Lei et al., 2017, 2019; 
Shafie et al., 2023). Moreover, the lack of within-study replication 
through independent and repeated cross-validation has limited the 
insight into the reliability of the findings. To address these issues, we 
recruited a larger group of individuals with BPD from several referral 
services and a group of healthy controls (HC) in order to assess the 
reliability of the findings. Due to the inconclusive prior literature, we 
adopted an explorative approach by calculating the functional connec-
tivity of fMRI data over the whole brain at different spatial scales and 

used these connectivity values as features in a machine learning classi-
fication approach. The different scales of analysis are schematically 
visualized in Fig. 1 using a set of illustrative regions. We evaluated the 
effects of spatial smoothing and global signal regression on prediction 
accuracies with repeated 5-fold cross-validation of balanced and 
matched subgroups (inner cross-validation). Finally, we evaluated the 
generalizability of the findings by applying the classifiers to the partic-
ipants that were excluded from the matched inner cross-validation. 

2. Methods and materials 

2.1. Participants 

One hundred and eighty-seven adult participants were selected from 
a larger study investigating social exchanges in BPD and antisocial 
personality disorder reported on elsewhere (Euler et al., 2019; Huang 
et al., 2020; Rifkin-Zybutz et al., 2021; Wendt et al., 2022). All partic-
ipants provided a written informed consent before participating in the 
study. Here, we included only the control participants and the patients 
with BPD. From those, we excluded participants that had >10 % of their 
data affected by excessive motion (defined as >0.5 mm framewise 
displacement; N = 17) or whose data was otherwise noisy (extensive 
signal distortion in the EPI images; N = 1), and participants with 
incomplete data on sex/gender (N = 2), leaving 167 participants (63 HC, 
104 BPD as reported by referring clinician) for subsequent matching and 
analysis. The authors assert that all procedures contributing to this work 
comply with the ethical standards of the relevant national and institu-
tional committees on human experimentation and with the Helsinki 
Declaration of 1975, as revised in 2008. All procedures involving human 
subjects/patients were approved by [Research Ethics Committee Wales, 
12/WA/0283]. For more details on recruitment, diagnostic evaluation, 
and medication, see Supplementary Methods. 

2.2. Procedure 

All participants underwent a comprehensive multi-day protocol 
comprising behavioral paradigms, questionnaires, diagnostic and 
developmental interviews, the Raven’s standard progressive matrices 
(RSPM) test of non-verbal fluid intelligence, and structural and func-
tional (neuroeconomics-based social tasks) magnetic resonance imag-
ing. Resting state functional connectivity data were acquired between 
the last task-based fMRI paradigm and multi-parameter mapping MRI 
sequences. The order of the task paradigms was counter-balanced to 
avoid potential mean differences introduced by the preceding task, 
although we did not expect lasting post-task connectivity differences. 
During the resting state scan, participants were instructed to lie still 
inside the scanner with their eyes open while looking at the MS Windows 
2000 start screen, with the windows logo at the center. Participants were 
instructed to “think of whatever comes to mind and to let their mind 
wander”. Eye tracking was used to control whether they stayed awake 
during the 4:30 min of data acquisition and excluded the participants 
whose alertness was questionable or who fell asleep. 

2.3. Functional magnetic resonance imaging 

Functional imaging was performed at three sites in London, United 
Kingdom with similar Siemens MAGNETOM Trio 3-T MRI scannners. 
The voxel size of data was 3.4375 × 3.4375 × 4 mm3, FOV 220 mm, 37 
slices, TR 2 s, TE 25 ms, flip angle 90◦. Total duration of the functional 
scan was 5 min (150 volumes). T1 weighted MPRAGE images (matrix 
size 512 × 448, in-plane resolution 0.4785 × 0.4785 mm, 192 slices, 
slice thickness 1 mm, TR 1200 ms, TE 2.66, inversion time 600 ms, flip 
angle 12◦) were acquired for anatomical registration. The scanning site 
was used as an additional hard criterion during pairwise matching of 
subjects and it was added as an effect of no interest in the analyses. 

J.M. Lahnakoski et al.                                                                                                                                                                                                                         



Journal of Affective Disorders 360 (2024) 345–353

347

2.4. Preprocessing 

Standard fMRI preprocessing was performed in FSL (fMRIB Software 
Library; (Smith et al., 2004; Woolrich et al., 2009)) including removal of 
first functional volumes, motion correction, brain extraction, motion 
regression and blacklisting, coregistration, standardization and high- 
pass filtering. Additionally, effects of spatial smoothing were evalu-
ated and a band-pass filter was applied during analysis. For additional 
details, see supplementary methods section. 

2.5. Participant matching 

The subject groups were formed using three strategies: 1 – prior 
referral diagnosis of BPD from referring specialist services (based upon 
clinical assessment by the referring clinical team from one of the seven 
participating London NHS Mental Health Trusts), 2 – diagnosis based on 
structured clinical interview according to DSM-IV performed by trained 
and supervised research staff (SCID II; subsequently referred to as “SCID 
II grouping”) excluding patients who no longer filled the diagnostic 
criteria for BPD and control participants scoring above the cutoff in the 
Standardised Assessment of Personality: Abbreviated Scale (SAPAS; 
(Moran et al., 2003)), and 3 – cut-off on the borderline subscale of the 
Personality Assessment Inventory (PAI-BOR; (Morey, 1991)) measuring 
the self-reported symptom severity (here referred to as “PAI-BOR 
grouping”). In the main analysis, to be conservative and to remove 
variance of no interest and generate groups of comparable size, each HC 
participant was individually matched with a BPD participant. For details 
on the matching procedure and characteristics of the included samples, 
see Supplementary Methods. 

2.6. fMRI data analysis 

Data were analyzed in Matlab (R2017a; MathWorks, Inc., Natick, 
MA, USA). Data were loaded using NIfTI tools for Matlab (Jimmy Shen; 
http://de.mathworks.com/matlabcentral/fileexchange/8797-tool 
s-for-nifti-and-analyze-image). We used “Brainnetome” (Fan et al., 
2016) and probabilistic cerebellar (Diedrichsen et al., 2009, 2011) 
atlases masked based on voxel intensity over participants to define 273 
ROIs covering the gray matter in the cerebrum and cerebellum. ROI time 
courses were calculated as the mean of the voxel time courses (and first 
principal components; see Supplementary methods). Connectivity 
matrices were calculated as linear correlations between ROI time 
courses while controlling, through linear regression, for volumes that 
were affected by excessive motion (FSL motion outliers output file). The 
analyses were repeated after regressing out the mean signal over all 
brain voxels to evaluate the effects of global signal regression (GSR). 

We used linear support vector machine (SVM) classifiers with 5-fold 
cross-validation implemented in Statistics and Machine Learning 
Toolbox in Matlab. Classifiers were trained on data at multiple scales 
(see Fig. 1): 1 – the full correlation matrices (global network classifi-
cation), 2 – the rows of the correlation matrices (seed based classifica-
tion), 3 – mean correlation between voxels in a ROI (ROI consistency) 
and between ROI-pairs, 4 – full correlation matrices between voxels 
within ROIs (within ROI connectivity) and 5– correlation matrices be-
tween voxels of pairs of different ROIs (between-ROI connectivity). For 
the global network classification, we additionally performed a three- 
group classification using a combination of three one-class SVM classi-
fiers (radial basis function kernel) to visualize the confusion between 
healthy controls and patients with and without medication. We evalu-
ated the generalizability of effects global and local effects in left out 
samples. All statistics are based on repeating the analysis pipelines with 
permuted class labels. For more details on analyses and statistics, see 
Supplementary Methods. 

Fig. 1. Schematic representation of the scales of analysis for a selection of 
regions. A Global connectivity – The full global scale connectivity matrix be-
tween the mean time courses of each ROI was used as features for classification. 
B Seed-based connectivity – The connectivity from one ROI to all other ROIs 
(rows of the global connectivity matrix) are used for classification to improve 
spatial specificity of results. C Fine scale connectivity – Voxel-to-voxel con-
nectivity between voxels in all unique pairs of ROIs are used for classification. 
Additionally, the consistency of ROIs and ROI pairs was calculated as the mean 
of all unique fine scale connectivity values. D Comparisons – Main comparison 
was between matched BPD and HC groups (left panel, yellow arrow). Addi-
tionally, to evaluate the effect of medications taken by a subset of the patient 
group, we repeated the global and seed-based analyses between matched 
groups of HC participants and sub-groups of medicated (BPD–Med) and un-
medicated (BPD + Med) BPD patients as well as between the two BPD groups 
(red arrows). Finally, we evaluated the effects of spatial smoothing and global 
signal regression to the accuracies in the different analyses (right panel). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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3. Results 

At the level of single links between ROIs (correlation between ROI 
time courses; t-test) and fine-scale connectivity (Supplementary Re-
sults), there were no significant differences with any of the group defi-
nition strategies or preprocessing approaches after correcting for 
multiple comparisons. Applying the global signal regression, the con-
nectivity values were reduced leading to more negative correlations, but 
the group differences remained non-significant. Because the group dif-
ferences did not survive corrections for multiple comparisons, we 
evaluated the reproducibility of local link-level differences at a more 
liberal threshold by repeatedly (100 iterations) splitting the data to non- 
overlapping discovery and replication subsamples and evaluating the 
replication rates (Fig. 2). No effects replicated at even moderately con-
servative uncorrected thresholds (p < 0.001; Fig. 2A, replication per-
centages shown black outline next to the vertical p-value thresholds). 
Even at liberal thresholds (p < 0.05, uncorrected) replication rates 
remained low (6.1 % for positive, 8.6 % for negative effects). However, 
the effects tended toward the same direction in discovery and replica-
tions subsamples as evidenced by the shift in the distributions and the 
lower reversal (percentages without outline) than replication rates. 
While replication rate across all links was relatively low, a subset of links 
replicated in up to 38 % of all iterations (Fig. 2B), in a sparse pattern 
across the brain. Fig. 2C shows the number of significantly replicable 
links originating at each ROI highlighting a mix of temporal, temporo- 
parietal, midline and subcortical regions as the most discriminative 
“hubs”, showing the highest number of discriminative links. 

Fig. 3 A shows the accuracy distributions of cross-validated support- 
vector machine classifiers (1000 iterations; 5-fold cross-validation 
within iterations) at the level of global connectivity structure 
compared to random permutations. Highest classification accuracies 
were achieved with SCID II grouping (mean accuracy 70 %, p <
0.00001) followed by referral diagnosis (mean accuracy ~58 %, p <
0.05). This drop in accuracy was driven by chance level prediction of 
individuals who either no longer fulfilled the diagnostic criteria for BPD 
in the SCID II interview (patients) or scored above threshold in the 
SAPAS screening questionnaire for personality disorders (controls). 
Accuracies using self-reported symptom severity (PAI-BOR) remained at 

chance level (~56 %, p ~ 0.07–0.11, n.s.). Thus, in the following fig-
ures, we will focus mainly on the SCID II grouping strategy. 

Global signal regression reduced accuracies with all grouping stra-
tegies (SCID II 65 %, p < 0.001; referral diagnosis 55 %; n.s., PAI-BOR 
~53 %, n.s). Spatial smoothing had no discernible effect on the accu-
racies on ROI-scale. On average, the predictive performance was largely 
balanced, i.e. the mean sensitivity and specificity were approximately 
equal to each other and to the mean accuracy. 

The seed-based ROI–ROI connectivity (Fig. 3 B) revealed widely 
distributed areas whose connectivity profiles were predictive of BPD 
diagnosis with the most discriminative SCID II grouping strategy. The 
most discriminative regions largely overlap with social brain networks 
that are activated during mentalizing (Gallagher et al., 2000) extending 
to the left-hemisphere dominant temporo-frontal language and the 
intraparietal sulcus (IPS), supplementary motor area and premotor re-
gions that are important for action understanding as well as pain 
perception during naturalistic social observation (Lahnakoski et al., 
2012). To compare the most discriminative regions across all three 
grouping strategies, Fig. 3 C shows the overlap of the significantly pre-
dictive seed regions. The regions that most consistently discriminate 
between patients and controls with all grouping strategies include the 
dorsomedial prefrontal cortex, precuneus and posterior cingulate cortex, 
anterior temporal lobe, and left-lateralized posterior superior temporal 
sulcus, inferior frontal gyrus, anterior insula and supplementary motor 
area/paracentral lobule. The seed ROIs that reached a significant clas-
sification accuracy with at least two of the three group definition stra-
tegies are listed in Supplementary Table 2 including the top rated 
“Behavioral domains” listed in the Brainnetome atlas. Most common 
high-level domains are cognition (13 regions; most common sub domains 
were social cognition, memory and language, each mentioned 3 times), 
perception (8 regions, 6 of which were visual), action (4 regions including 
execution, inhibition and imagination), followed by emotion and inter-
oception (2 regions each). The full list of significant classification accu-
racies with each group definition strategy and the MNI coordinates of 
ROI centroids and atlas labels are listed in Supplementary Table 3). 

To evaluate the generalization of the findings, we applied the clas-
sifiers trained on balanced subsamples of the data to the unbalanced left 
out participants. Fig. 4A shows the inner and outer cross-validation 

Fig. 2. Reproducibility of local differences. A The distribution of all local difference t-values across connections and iterations is shown in gray. The distributions of t- 
values in the outer cross-validation of those links that showed significant positive (BPD > HC) or negative (HC > BPD) effects in the inner cross-validation sample are 
shown in red and blue, respectively. The distributions and the associated (one-tailed) t-value thresholds for three p-levels are plotted in solid (p < 0.05), dashed (p <
0.005) and dot-dashed (p < 0.001) lines. Replication rates are shown surrounded by a black outline next to the lines denoting each p-value threshold (red numbers 
indicate BPD > HC and blue numbers HC > BPD effects in the discovery sample). Reversal rates of the effects are shown similarly, except without a black outline. B 
Replication rates of individual links at initial uncorrected threshold of p < 0.05 between discovery and replication analysis. Thickness and colour intensity indicate 
the percentage of replications over iterations and threshold for visualization is based on the maximum value observed in identical analysis with randomly permuted 
labels. Colors are similar to panel A. The distribution of replicabilities over all links is shown on a logarithmic scale below the connectivity plot. C Number of links 
showing replicable effects from each ROI (node degree in panel B). Colormap is capped at 6 to visualize differences between ROIs. However, highest observed node 
degree is 11 at the left pSTS ROI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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accuracies with the different grouping strategies before (left) and after 
(right) removing nuisance covariates based on the training data. The 
colors of the dots indicate the size of the groups in the inner cross- 
validation sample. Although the classification accuracy remains above 
chance level in the outer generalization sample, the inner cross- 
validation tends to over-estimate the accuracy, particularly when the 
nuisance covariates are regressed out of the connectivity matrices. 

Although the accuracies were significant, generalizable and rela-
tively stable with multiple training sample sizes (0.6–0.7, depending on 
the specific approach), the real-world applicability depends on the base 
rate of the condition in the population. To illustrate this, Fig. 4B shows 
the accuracy and the positive and negative predictive values sampled at 
different prevalence levels in the outer cross-validation sample. While 
the accuracy remains stable at all prevalence levels, the positive pre-
dictive value drops (and negative value increases) quickly as the prev-
alence drops to more realistic levels. 

Fig. 4C and D show the ROIs whose connectivity profile (rows of the 
connectivity matrix) was significantly predictive of BPD diagnosis using 
the SCID II grouping. The data are visualized as percentage of iterations 
where both inner and outer cross-validation results were significant 
(Fig. 4C) and percentage of iterations where either inner (red: Fig. 4D) or 

outer (blue) cross-validation accuracies were significant (p < 0.05, 
FWER controlled). The areas are largely consistent with both approaches 
and coincide with regions implicated in the main analysis. Additionally, 
we evaluated effects of symptom dimensions, medication, in-scanner 
motion and other confounds (see Supplementary Results). While medi-
cation affected accuracies and showed a potential interaction effect with 
the global BOLD signal, none of these variables contributed clearly to the 
observed classification accuracies above and symptom dimensions did 
not correlate with classifier scores beyond the mean group difference. 

4. Discussion 

Our study is the largest to date to assess resting state connectivity in 
BPD patients with a comprehensive description of patients’ character-
istics. Our results demonstrate that significant and wide-spread differ-
ences of functional connectivity exist in patients with borderline 
personality disorder compared with healthy control participants at 
multiple scales. By contrast, we observed no strong local univariate 
differences in connectivity, although some weak effects could be repli-
cated in multiple non-overlapping subsamples. Importantly, our find-
ings underline that a thorough diagnostic procedure based on a 

Fig. 3. Classification accuracies based on global network and seed-based ROI connectivity. A Distributions of accuracies based on full global network connectivity 
between ROIs over 1000 iterations with different group definition strategies (left – SCID II diagnosis, middle – referral diagnosis, right – PAI-BOR self-report cutoff) 
showing highest accuracies for the SCID II diagnosis, reduced accuracies for the referral diagnosis grouping and null accuracies for grouping based on self-reports. 
Null distribution using randomly permuted labels is shown in gray; accuracies without global signal regression are shown in blue and accuracies with global signal 
regression in red. Global signal regression reduces accuracies in all cases, but results are unaffected by spatial smoothing at the ROI scale. B Mean seed based ac-
curacies visualized on the brain surface at each seed ROI location for SCID II diagnosis. Threshold is set at p < 0.05 in the full distribution without averaging. C 
Overlap of significantly predicting regions with the three grouping strategies. Colour indicates in how many (out of three) analyses the prediction accuracy is 
significant. Abbreviations: aSTS/ATC – anterior superior temporal sulcus/anterior temporal cortex, Cer – Cerebellum, IPL/OPL – inferior/opercular parietal lobule, 
IPS – intraparietal sulcus, LOC – lateral occipital cortex/complex, mOC – medial occipital cortex, mPFC – medial prefrontal cortex, OFC – orbitofrontal cortex, PreCG 
– precentral gyrus, pSTS – posterior superior temporal sulcus, TPJ – temporoparietal junction, vTC – ventral temporal cortex. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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structured clinical interview as well as a screening for personality dis-
orders in the control group are associated with better discriminative 
performance in classification of patients. Clinically, our findings suggest 
that rsMRI may be sensitive to central aspects of psychopathology of 
BPD, although the discriminative performance is modest. Additional 
work should be undertaken to evaluate whether data-driven classifica-
tion schemes could predict outcome and treatment assignment in the 
future, as is already starting to be done for other psychopathologies (e.g. 
(Dichter et al., 2015; Plitt et al., 2015; Whitfield-Gabrieli et al., 2015)). 

Taken together, our multi-scale analyses indicate that the predictive 
power of functional connectivity is modest, but it is most consistent in 
cortical midline structures, posterior and anterior aspects of the superior 
temporal sulcus, and lateral parietal regions. Critically, these regions 
overlap with multiple different canonical functional networks that are 
associated with mentalizing and social processing, sensorimotor func-
tions, action observation and bodily sensations/homeostatic moni-
toring. The former set of regions has recently been shown to increase in 
gray matter volume as a result of BPD-tailored psychotherapy (Mancke 
et al., 2018). Prior findings on symptom-related alterations of connec-
tivity in BPD have been rare and reported effects relatively small. This is 
also consistent with the lack of robust differences of connectivity using 
univariate contrasts in the current data. A recent study found differences 
between BPD and HC individuals in degree centrality and fractional 
amplitude of low-frequency fluctuations in left posterior temporal lobe 
and precuneus, similar to the current data, and found the changes to be 
correlated with attachment scores in the patient population (Lei et al., 
2018). Here, for the first time we used a differentiation of self-reported 
BPD and depression symptoms and medication status as predictors of 
classifier group likelihoods to assess their importance for classification. 
We observed no linear effects of the symptom scores beyond a mean 

group difference with the current symptom measures and sample size. 
Thus, the self-report questionnaires of symptoms appeared to be unre-
liable predictors of abnormal brain function and should be com-
plemented by thorough clinician-based diagnostic procedures and 
quantitative interaction-based phenotyping in larger samples (Lahna-
koski et al., 2022; Schilbach, 2019). 

While we consistently observed significant accuracies based on wide- 
spread connectivity patterns, we observed no significant univariate 
group differences in the link strengths after correcting for multiple 
comparisons. Modestly discriminative links co-occurred with the most 
discriminative seed ROIs in the classification analysis. Thus, the classi-
fication performance at larger spatial scales is likely driven by distrib-
uted patterns of small, moderately replicable connectivity differences. 
However, the lack of strong link-level effects or information on causal 
direction of functional connections limits the interpretability of the 
connectivity differences between groups. Moreover, the accuracies 
achieved with the connectivity-based machine learning approach varied 
relatively widely (from ~40 to over 90 % in extreme cases) between 
repeated iterations of the same analysis pipeline with random group 
splits. This underlines the heterogeneity of the population (there are 
effectively over 120 permissible symptom combinations, which would 
qualify for a DSM-based clinical diagnosis; (Herbort et al., 2016)) and 
suggests that multiple classifications with random group splits are 
crucial for estimating the true expected accuracy in machine learning 
resting state analyses. To evaluate the generalizability of our classifiers, 
we applied the classifiers trained on balanced subsets to the unseen, left 
out participants. These results were largely consistent with those 
attained in the smaller matched samples, but the accuracies were 
inflated by nuisance regression in the inner cross-validation compared to 
the left-out sample. Moreover, when the inner cross-validation sizes 

Fig. 4. Generalization of classification to unseen data. A Distributions of classifier performance in inner vs. outer cross-validation samples in the same iterations. Left 
panel shows results without nuisance regressors and right panel shows results when nuisance effects were estimated in the whole inner cross-validations sample. B 
Effects of prevalence of BPD diagnosis in the outer cross-validation sample. The mean accuracies, positive predictive values and negative predictive values are plotted 
against the proportion of patients in randomly selected subsets of the left-out data. C ROIs whose connectivity profiles significantly (p < 0.05, FWER controlled in 
empirical null analyses) predicted BPD diagnosis in both inner and outer cross-validation in the same iteration. D ROIs whose connectivity profiles significantly (p <
0.05, FWER) predicted BPD diagnosis either in the inner (red) or outer (blue) cross-validation. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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increased, we observed a negative correlation of inner vs. outer cross- 
validation accuracies as the outer cross-validation sample was increas-
ingly constrained and imbalances between participant samples were 
exacerbated by the limited left-out sample size (Fig. 4A). While repeated 
cross-validation helps in avoiding focusing on the peculiarities of a 
single group split, larger samples with entirely independent replication 
data should be preferred in future studies. Moreover, while the current 
results are promising, their applicability to cross-sectional data with 
realistic prevalence of BPD is very limited; when prevalence is low, the 
positive predictive power drops drastically (Fig. 4B). Thus, significant 
advances are still required for clinical applications. 

Global signal regression has raised considerable controversy, 
particularly in the field of resting state functional connectivity (Murphy 
and Fox, 2017). It has been argued to reflect confounding artifacts of 
motion and physiology, yet, regressing out the global signal also 
mathematically induces negative correlations in the data (Murphy and 
Fox, 2017). In the current study, global signal regression generally 
reduced accuracies, however, the effect was small, and it was even 
reversed when only non-medicated patients were classified against 
healthy controls. Thus, spatially specific effects of the global signal may 
affect the discriminative power of resting state functional connectivity. 
Spatially distinct patterns of brain regions contributing to the global 
signal were also shown to be predictive of schizophrenia (Yang et al., 
2016). In the current study, we excluded participants with excessive 
motion, and controlled for signals induced by motion, white matter and 
cerebrospinal fluid to combat artefactual global signal changes. How-
ever, linear regression strategies do not perfectly remove all traces of 
these signals and they may still affect multivariate classification results. 
Therefore, the specific contributions of motion, cardiac and breathing 
rhythms and brain signals of interest should still be explored further in 
the future. 

The reason for observing higher accuracies for the “gold standard” 
SCID II grouping strategy could be explained by real differences in brain 
connectivity in the excluded participants or mere technical issues due to 
different group sizes. To evaluate these options, we explored the clas-
sifier scores for the participants who were included in the Referral 
grouping, but were excluded from the SCID II grouping, because the 
groupings were in other ways equivalent. The participants were 
excluded due to either not meeting diagnostic criteria (patients) or 
scoring over exclusion threshold using the SAPAS screening question-
naire for personality disorders (controls), suggesting that they might 
show intermediate connectivity patterns, in-between the two groups. 
The excluded participants were classified at chance level explaining at 
least part of the lower accuracies in the Referral grouping. This tenta-
tively supports the interpretation that the individuals not matching the 
criteria for either group exhibited brain connectivity patterns that were 
particularly difficult to classify as either BPD or control. Thus, it appears 
particularly important that the current diagnosis and symptoms are 
carefully evaluated by a clinician rather than relying on old diagnoses or 
self-reports. However, the low number of excluded participants and 
other individual differences (e.g. in motion, brain size or education) 
preclude strong interpretation of the causes that made these individuals 
particularly difficult to classify. 

4.1. Limitations 

Importantly, in addition to group differences of interest, there are 
also other sources of variation in resting state functional connectivity. 
While the main source of variance seems to be due to individual factors 
(Gratton et al., 2018), and intrinsic functional connectivity appears 
largely stable during rest and different audiovisual stimulation condi-
tions (Simony et al., 2016), the test-retest reliability is not perfect and 
depends on the specific brain regions and the amount of available data 
(Noble et al., 2017). Moderate individual–task interactions may also 
exist (Gratton et al., 2018). Reliability might be improved by providing 
the participants with an attention-inducing naturalistic stimulus, which 

appears to reduce participants’ motion (Vanderwal et al., 2015), at least 
in children. An engaging stimulus may also reduce the intraindividual 
variability of connectivity between subsequent measurements, which 
could arise due to unconstrained, idiosyncratic patterns of thought. 
Reducing this unwanted variability could potentially even accentuate 
intergroup variability (for discussion and a conceptual demonstration, 
see (Finn et al., 2020)). Additional limitations of the study are discussed 
in the Supplementary Discussion section. 

4.2. Conclusions 

Our results demonstrate that widespread functional connectivity 
patterns reliably discriminate between BPD and control participants. 
However, only a subset of these regions was consistently able to classify 
patients irrespective of medication as well as group selection and pre-
processing strategies suggesting considerable heterogeneity in the pa-
tient population. Importantly, the classification results generalized to 
unbalanced left-out participants. However, the specificity of these 
findings should be further evaluated in relation to other psychiatric 
disorders. Low reliability of local link-level differences may explain the 
lack of consensus in the previous literature. Therefore, it is imperative 
that the reliability of observations is scrutinized and larger, well- 
characterized transdiagnostic samples are favored in future studies to 
avoid discrepant findings and over-interpretation of functional differ-
ences associated with psychiatric disorders. 
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