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Abstract: In the mammalian brain, midbrain dopamine neuron activity is hypothesized to encode 
reward prediction errors that promote learning and guide behavior by causing rapid changes in 
dopamine levels in target brain regions. This hypothesis (and alternatives regarding dopamine’s 
role in punishment-learning) has limited direct evidence in humans. We report intracranial, sub-
second measurements of dopamine release in human striatum measured while volunteers (i.e., 
patients undergoing deep brain stimulation (DBS) surgery) performed a probabilistic reward- and 
punishment-learning choice task designed to test whether dopamine release encodes only reward 
prediction errors or whether dopamine release may also encode adaptive punishment-learning 
signals. Results demonstrate that extracellular dopamine levels can encode both reward and 
punishment prediction errors, but may do so via by independent valence-specific pathways in the 
human brain.   

 
One-Sentence Summary: Dopamine release encodes reward and punishment prediction errors 
via independent pathways in the human brain.  
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Main Text:  
Dopamine neurons are critical for mammalian brain function and behavior (1), with changes in 
dopaminergic efficacy believed to underlie a wide range of human brain disorders including 
substance use disorders, depression, and Parkinson’s disease (2–5). The basic function of 
dopamine neurons is hypothesized to be to encode information about errors in an organism’s 
expectations about rewarding outcomes – so-called reward prediction errors (RPE; 6, 7). 
Specifically, in non-human animal research, it has been shown that dopamine neurons encode 
"temporal difference" RPEs (TD-RPE; 6–13), an optimal learning signal derived within 
computational reinforcement learning theory (14) and that has recently been central to major 
advances in the development of deep learning artificial neural networks capable of autonomously 
achieving human expert-level performance on a variety of tasks (15–18).  
Decades of non-human animal research supports the idea that dopamine neurons encode RPEs in 
the mammalian brain (6–13; see 10 for review); however, in humans, direct evidence is limited. 
There is clear evidence in humans that changes in the firing rate of putative dopamine neurons 
encode RPEs (19), and regions rich in afferent dopaminergic input show changes in blood oxygen-
level-dependent signals consistent with physiological processing of RPEs (20–22). Still, due to 
methodological limitations, these experiments cannot provide direct evidence that dopamine 
release in target regions encodes RPEs. In rodents, sub-second changes in extracellular dopamine 
levels in the striatum have been measured using fast scan cyclic voltammetry (FSCV) and rapid-
acting, genetically encoded fluorescent dopamine sensors (e.g., dLight, GRAB; 23, 24),  revealing 
that dopamine levels reflect RPEs (11–13) but also respond to diverse affective stimuli (e.g., drug-
predictive cues; 25, 26)  and vary with specific  recording location (27) and task demands (e.g., 
effort costs; 28). Consistent with this, rodent and non-human primate studies have shown that 
changes in dopamine neuron firing rate may also encode aversive prediction errors (12, 29–33). 
Relatedly, non-invasive human neuroimaging experiments suggest that reward and punishment 
prediction error signals are represented in dopamine-rich regions during learning about appetitive 
and aversive consequences (34–37).  
Recently, studies leveraging the ability to directly measure dopamine release in the human brain 
with high temporal resolution have revealed that sub-second changes in dopamine levels reflect 
both actual and counterfactual error signals during risky decision-making (38, 39), the average 
value of reward following a sequence of decisions (40), and non-reinforced, though goal-directed, 
perceptual decision-making (41). In experiments where RPEs could be estimated (38, 39), 
dopamine levels seemed to entangle actual and counterfactual information (i.e., outcomes that 
"could have been" had a different choice been made) for both gains and losses, resulting in a 
superposed value prediction error signal (38). These results suggest the hypothesis that 
extracellular dopamine fluctuations encoding of reward and punishment prediction errors could be 
derived from independent streams of information processing, allowing these signals to be 
efficiently combined or differentiated by downstream neurons in the striatum (42).  

We sought to determine whether dopamine release in human striatum specifically encodes TD-
RPEs in humans as initially suggested by foundational work in non-human primates (6,7). We also 
sought to test an alternative hypothesis that dopamine release in these same loci also encodes 
punishment prediction errors, the possibility of which remains debated (12, 29–33). To test these 
hypotheses, we used human voltametric methods (38–41, 43) while participants performed a 
decision-making task (Fig. 1A) that allowed us to disentangle the impact of rewarding and 
punishing feedback on dopamine release and choice behavior. This approach allowed us to monitor 
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dopamine release (Fig. 1B) while participants learned from rewarding as well as punishing 
feedback. The specific task design (43) allowed us to test two different reinforcement learning 
models that express the mutually exclusive hypotheses that dopamine release encodes reward- and 
punishment-prediction errors via 1) a unidimensional valence system, versus 2) a valence-
partitioned system (44) whereby appetitive and aversive stimuli are processed by independent 
systems, thereby allowing learning of co-occurring though statistically independent appetitive and 
aversive stimuli (fig. S1; 43).  
 

 
Figure 1 – Probabilistic reward and punishment task and associated trial-by-trial dopamine 
time series recorded via human voltammetry. (A) Schematic of a trial from the choice task. (B) 
Trial-by-trial time series of caudate dopamine levels recorded from a single participant, with time 
series colored according to task phase; vertical dashed line indicates when the choice options were 
presented on each trial, and colored markers indicate trial events of interest. 

  
 Human voltammetry experimental design 

Participants (N=3) were adult patients diagnosed with essential tremor (ET) who consented to 
undergo deep brain stimulation (DBS) electrode implantation neurosurgery (43). Prior to the day 
of surgery, all participants provided written informed consent (43) to participate in the research 
procedure after deciding to undergo the clinical procedure. The neuroanatomical target of DBS 
lead implantation surgery for patients with ET is the ventralis intermediate nucleus of the thalamus, 
and this surgery includes micro-electrode recording within the caudate nucleus – a major site for 
dopaminergic innervation and dopamine release. Notably, the pathophysiology of ET is thought 
to not involve disruptions of the dopaminergic system (45). Prior to implanting the DBS lead, a 
carbon-fiber microelectrode is used for voltammetric recordings along the trajectory that the DBS 
lead may be placed (38–41 ,43). In the present work, the carbon-fiber microelectrode was placed 
in the caudate, and dopamine measurements were sampled once every 100msec while participants 
performed the reward and punishment learning task. Following the research procedure, the carbon 
fiber microelectrode is removed and the DBS electrode implantation surgery is completed. 
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Importantly, no change in the outcome or associated risks have been associated with performing 
this intracranial research (46). 

The behavioral task we employed is a probabilistic reward and punishment learning task with 
reversal learning where participants' actions were reinforced or punished with monetary gains or 
losses. Participants are instructed and actually paid a bonus according to the dollar amounts they 
earn in the task. Unbeknownst to the participants, the task is setup in stages (fig. S2), such that the 
initial stage (phase 1) is biased towards probabilistic gain trials (binary outcomes: $1 or $0) where 
participants can earn an initial reserve of cash before entering phase 2, which introduces trials with 
probabilistic losses (binary outcomes: -$1 or $0). In the final stage (phase 3), the probabilities of 
gain or loss outcomes associated with the choice cues are held constant, but the magnitudes of the 
outcomes are changed, such that the expected values change which options should be expected to 
pay the most or least (fig. S2; 43). Optimal performance on this task requires participants to learn 
from positive and negative feedback to select the option on each trial that maximizes the expected 
reward and minimizes the expected punishment.  

 Human dopamine levels and temporal difference reward prediction errors 
Behavioral data demonstrated that participants learned the PRP task’s incentive structure: they 
chose the best option on a given trial more often than chance (fig. S3). To test whether sub-second 
dopamine fluctuations in human caudate reflected TD-RPEs, we extracted time series of dopamine 
levels on each trial aligned to the moments of option presentation, action selection, and outcome 
presentation, each of which were expected to elicit TD-RPEs during the course of the task. We fit 
a temporal difference reinforcement learning (TDRL) model to participant behavior and compared 
the average dopamine timeseries estimates for positive TD-RPEs (n=640) and negative TD-RPEs 
(n=524) (Fig. 2A,B; fig. S4). We found that, across all trials, sub-second dopamine fluctuations in 
human caudate did not significantly distinguish positive versus negative TD-RPEs (two-way 
ANOVA: FRPE-sign(1,6) = 1.40, p = 0.24; Fig. 2A). However, separating dopamine responses into 
reward- versus punishment-trial types revealed that dopamine release distinguished TD-RPEs on 
reward trials (two-way ANOVA: FRPE-sign(1,6) = 5.83, p = 0.016; Fig. 2B) but did not distinguish 
TD-RPEs on punishment trials (two-way ANOVA: FRPE-sign(1,6) = 0.12, p = 0.72; Fig. 2B). 
Notably, on reward trials, dopamine fluctuations discriminated TD-RPEs within 300ms following 
a prediction error (one-tailed independent samples t-tests [(RPE>0) > (RPE<0)]: t200ms(688) = 2.57, 
p = 0.0052; t300ms(688) = 2.04, p = 0.021). 
 Human dopamine levels and valence-partitioned prediction errors 

Prior work demonstrated that dopaminergic responses could track punishment prediction errors 
(12, 30–33), but results shown in Figure 2B suggest that dopamine fluctuations do not reflect 
temporal difference reward learning when the outcome stimulus is punishing (e.g., monetary 
losses). Thus, we hypothesized that dopamine may encode punishment prediction errors, but as an 
independent, punishment-specific valuation system (44). We tested this hypothesis by fitting to 
participant behavior a valence-partitioned reinforcement learning (VPRL) model that expresses 
the independence of reward and punishment learning explicitly (42, 44). 
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Figure 2 – Phasic dopamine levels in human caudate reflect reward and punishment 
prediction errors. Dopamine responses from 0-700ms following prediction errors across all trials 
in the PRP task are categorized by prediction error sign and trial type. (A) Phasic dopamine 
transients fail to separate positive and negative TD-RPEs. (B) Dopaminergic TD-RPE responses 
sorted by trial type: gain trials (left panel), loss trials (right panel). (C) Phasic dopamine transients 
across all trials sorted by VP-RPEs sign (top panel) and VP-PPEs sign (bottom panel). Asterisks 
denote p < 0.05. 

 
Fitting subjects’ behavior to a VPRL model resulted in a better fit to participant behavior compared 
to TDRL (table S1; 43). We replicated these results in an independent cohort of healthy human 
adults (N=42) who completed the PRP task on a computer in a behavioral laboratory setting (43; 
table S1, fig. S3, S5, S6). Further comparisons revealed that VPRL algorithms may perform reward 
and punishment learning more efficiently than traditional TDRL models that do not partition 
appetitive and aversive stimuli (fig. S5, S6).  
Taken together, our behavioral analyses are consistent with participants adaptively learning the 
PRP task structure by updating representations of rewarding experiences independently from 
representations of punishing experiences. Thus, we next tested the hypothesis that dopamine 
release encoded valence-partitioned RPEs (VP-RPEs) and valence-partitioned punishment 
prediction errors (VP-PPEs) by sorting dopamine release time series data by the VPRL model-
specified prediction errors: positive VP-RPEs (n=438), negative VP-RPEs (n=252), positive VP-
PPEs (n=228), or negative VP-PPEs (n=246) (Fig. 2C; fig. S4). We found that dopamine transients 
distinguished VP-RPEs on reward trials within the same time window as found for TD-RPEs (two-
way ANOVA: FRPE-sign(1,6) = 3.48, p = 0.06; one-tailed independent samples t-tests [(RPE>0) > 
(RPE<0)]: t200ms(688) = 2.1, p = 0.018; t300ms(688) = 1.66, p = 0.049; Fig. 2C). However, we also 
observed that phasic dopamine responses effectively distinguished VP-PPE signals (two-way 

* *

* * *

A     TDRL – All trials C       VPRL – All trials

* *

B          Reward trials       Punish trials
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ANOVA: FRPE-sign(1,6) = 8.08, p = 0.0045; Fig. 2C) within a temporal window distinct from VP-
RPE responses, lasting from 400-600ms following a prediction error (one-tailed independent 
samples t-tests [(PPE>0) < (PPE<0)]: t400ms(472)  = -1.68, p = 0.047; t500ms(472)  = -2.3, p = 0.011; 
t600ms(472)  = -1.90, p = 0.029). These results demonstrate that sub-second dopamine fluctuations 
in human caudate may encode valence-partitioned reward and punishment prediction errors.  
 Decoding reward and punishment prediction errors from dopamine levels 

 Fluctuations in extracellular dopamine levels are expected to provide an interpretable 
signal to downstream neural structures. To determine whether the signals we report (Fig. 2C) are 
robust enough to be decoded, we trained logistic classifiers to distinguish dopamine time series 
resulting from positive and negative prediction errors on reward trials (Fig. 3A,B) or positive and 
negative prediction errors on punishment trials (Fig. 3C,D; 43). The classifiers trained to 
discriminate positive versus negative reward prediction errors (TD-RPEs or VP-RPEs on rewarded 
trials) performed comparably for both TDRL and VPRL models (Fig. 3A,B). Conversely, 
classifiers trained to discriminate positive from negative punishment prediction errors (TD-RPEs 
or VP-PPEs on punishment trials) only succeeded when the dopamine time series were parsed 
according to the VPRL model, and performed at chance level when the dopamine transients were 
hypothesized to be encoded by TDRL (Fig. 3C,3D). 
 

 
Figure 3 – VPRL reward- and punishment-prediction errors can be decoded from human 
dopamine transients. Performance of the logistic classifier trained on (A) TDRL- (red) or VPRL-
derived (blue) positive and negative RPEs is comparable across models, with (B) the difference in 
the area under the receiver operating characteristic curve (auROC) values not being statistically 
significant; p-value derived from permutation test with 50,000 iterations. (C,D) Same as (A,B) but 
for punishment trials; the difference in auROC values for the PPE logistic classifiers were 
significantly different for TDRL and VPRL (p= 0.0103).    
 

In summary, we demonstrate in humans that sub-second dopamine fluctuations in the caudate 
nucleus reflect reward and punishment prediction error signals as predicted by a valence-

A

B

C

D
p = 0.6411 p = 0.0103

Reward trials Punishment trials
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partitioned reinforcement learning framework. Collectively, our results suggest that human 
decision-making is influenced by independent, parallel processing of appetitive and aversive 
experiences that can affect modulation of dopamine release in striatal regions on rapid timescales 
(hundreds of milliseconds). Our findings provide a new perspective on previous reports that 
dopamine fluctuations in human striatum appear to superpose actual and counterfactual 
information during risky decision-making (38, 39). The results of the present study are consistent 
with the idea that behavioral reinforcers are processed by independent neural systems according 
to the valence of the stimulus. Related ideas have been proposed, for instance that rewards and 
punishments are integrated together during learning (as opposed to being processed 
independently), leading to a “zero-sum” prediction error that is signaled by dopamine neurons only 
if the prediction error is positive (i.e., rewarding; 47); or, that positive and negative RPEs are 
learned about “asymmetrically” (i.e., different learning rates; 48, 49). Importantly, however, these 
proposals are computationally and algorithmically distinct from what is proposed by a model like 
VPRL where learning about appetitive and aversive stimuli is performed by independent systems 
prior to being compared to valence-specific expectations (44).  
There are also a multiplicity of plausible neural mechanisms that could give rise to the present 
data. Notably, the timing of phasic dopamine response to punishing events is consistent with 
proposed neuroanatomical circuitry by which aversive stimuli may modulate dopamine neuron 
activity (50). Combining recordings of somatic spiking activity and neurotransmitter release at 
target brain regions could test more comprehensively, for instance, whether distinct sub-
populations of dopamine neurons may be activated to signal valence-specific prediction errors, or 
whether a separate neural system controls the timing and direction of dopaminergic activity in 
response to valent behavioral reinforcers.  
The approach used to collect the data presented here are severely constrained by the requirement 
of standard-of-care neurosurgical procedures that provide ‘safe passage’ deep into the human 
brain. Significant challenges lay ahead for future efforts to determine whether these findings 
generalize to other brain regions and other patient populations, including neurologically healthy 
humans; however, these data demonstrate that such recordings are feasible. A growing number of 
conditions use DBS to effect symptom management, including Parkinson’s disease, substance use 
disorders, and depression. Together, patient volunteers from these and other populations working 
with clinical research teams can provide significant insight into human brain function, human 
experience, and the mechanisms in human neural systems that are altered in human brain disorders. 
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Materials and Methods 
 
Patient recruitment and informed consent 
 

A total of 11 patients (6 female, 5 male, age range = 48-82, mean age +/- SD = 67.5 +/- 5 
10.9) diagnosed with essential tremor (ET) and approved candidates for DBS treatment 
participated in this study. Three patients performed the procedure while carbon fiber 
microelectrodes recorded dopamine release in their caudate, and one patient performed the 
procedure while a carbon fiber microelectrode recorded dopamine release in their thalamic  
ventralis intermediate nucleus (VIM). The other seven patients performed the task while 10 
recordings were made with a tungsten microelectrode. All eleven patients’ behavioral data were 
included in analyses for hierarchical parameter estimation; however, the tungsten microelectrode 
(n=7) and thalamic VIM (n=1) neurochemical recordings are not presented in the present work. 
After informed written consent was obtained from each patient, they were given details about the 
decision-making task (i.e., probabilistic reward and punishment task) and were familiarized with 15 
the type of outcomes experienced during game play and the controllers used for submitting 
responses. The experiment was approved by the Institutional Review Board (IRB#: IRB00017138) 
of Wake Forest University Health Sciences (WFUHS). Out of the eleven patients that participated 
in the study, four patients did not complete all 150 trials of the task (range = 121-148 trials).  

In addition to the cohort of ET patients, a behavior-only cohort of healthy adult humans 20 
(N=42; 19 female) was recruited from the local Winston-Salem community to complete the PRP 
task. Informed written consent was obtained from each participant, and the experiment was 
approved by the Institutional Review Board (IRB#: IRB00042265) of Wake Forest University 
Health Sciences (WFUHS). All behavioral experiments were conducted at WFUHS.  

 25 
Probabilistic Reward and Punishment (PRP) task experimental procedure 
 

The PRP task (Fig. 1A; fig. S2) is a 150-trial, two-choice monetary reward and punishment 
learning task, where chosen options are reinforced probabilistically with either monetary gains (or 
no gain) or monetary losses (or no loss). Six options (represented by fractal images) comprise the 30 
set of possible actions, with each option assigned to one of three outcome probabilities (25%, 50%, 
and 75%) and one of two outcome valences (monetary gain or loss); thus, there are three reward-
associated ‘gain/no gain’ options and three ‘loss/no loss’ options in the task, and the assignment 
of options to outcome probabilities and valences is randomized across participants. On each trial, 
two out of the six options are presented (note that option pairings are random, not fixed); depending 35 
on the phase of the task (Phase 1: trials 1-25; Phase 2: trials 26-75; Phase 3: trials 76-150), either 
two of the three ‘gain/no gain’ options are presented (i.e., ‘gain/no gain’ trials), or two of the three 
‘loss/no loss’ options are presented (i.e., ‘loss/no loss’ trials), or one of each ‘gain/no gain’ and 
‘loss/no loss’ options are presented (i.e., ‘mixed’ trials). Participants were told that certain options 
in the PRP task would earn them money and some options would lose them money, and 40 
participants were instructed that their goal was to maximize their earnings on the task and that they 
would receive their total earnings as a bonus monetary payment at the end of the study visit.  

At the beginning of the experiment (Phase 1, trials 1-25), each trial starts with the 
presentation of two of the three possible ‘gain/no gain’ options, and participants are reinforced 
with either a monetary gain or nothing ($1 or $0) according to the chosen option’s fixed 45 
probability. In Phase 2 (trials 26-75), the task introduces ‘loss/no loss’ trials which present two of 
the three ‘loss/no loss’ options that result in either a monetary loss or nothing (-$1 or $0) with 
fixed probabilities. In this phase, there are an equal number of ‘gain/no gain’ and ‘loss/no loss’ 
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trials, randomly ordered. In Phase 3 (trials 76-150), two options are presented randomly such that 
any trial may consist of two ‘gain/no gain options, two ‘loss/no loss’ options, or one ‘gain /no gain 
and one ‘loss/no loss’ option. Moreover, in Phase 3 the outcome magnitudes of all options change 
such that the 25%, 50%, and 75% ‘gain’ options now payout $2.50, $1.50, and $0.50, respectively, 
and the 25%, 50%, and 75% ‘loss’ options now lose -$1.25, -$0.75, and -$0.25, respectively (see 5 
dashed lines in fig. S2).  

On each trial, participants select an option at their own pace. Once a selection has been 
made, the unchosen option disappears at the same time that the chosen option is highlighted, and 
this screen lasts for three seconds. The outcome is then displayed for one second followed by a 
blank screen that lasts for a random time interval (defined by a Poison distribution with 𝜆 = 3 10 
seconds) before the next trial begins. Additionally, on each trial with probability 0.33, the blank 
screen following the outcome presentation is followed by a subjective feeling rating screen that 
consists of the text “How do you feel about the last outcome?” and a visual-analog rating scale 
with a vertical bar cursor that can be moved by the participant. Participants are asked to rate their 
feelings about the experienced outcome with this visual-digital scale, after which the blank screen 15 
reappears for another random time interval before a new trial begins.  
 
Behavioral data analysis 
 
Temporal Difference Reinforcement Learning model 20 
 

In the standard TDRL model (14,51), the expected value of a state-action pair 𝑄(𝑠! , 𝑎!), 
where 𝑖 indexes discrete time points in a trial, is updated following selection of action 𝑎! in state 
𝑠! according to: 

 25 
𝑄(𝑠! , 𝑎!) ← 𝑄(𝑠! , 𝑎!) + 	𝛼𝛿! eq. 1 

 
where 0 < 𝛼 < 1 is a learning rate parameter that determines the weight prediction errors have on 
updating expected values, and 𝛿! is the TD reward prediction error term: 
  

𝛿! = [𝑜𝑢𝑡𝑐𝑜𝑚𝑒! + 𝛾max" 𝑄(𝑠!#$, 𝑎>)] − 𝑄(𝑠! , 𝑎!) eq. 2 

where 𝑜𝑢𝑡𝑐𝑜𝑚𝑒! is the outcome (positive or negative) experienced in state 𝑠! after taking action 30 
𝑎!, 0 < 𝛾 < 1 is a temporal discount parameter that discounts outcomes expected in the future 
relative to immediate outcomes, and max

"
𝑄(𝑠!#$, 𝑎>) is the maximum expected action value over 

all actions 𝑎> afforded in the next state 𝑠!#$. We defined the trials of the PRP task as consisting of 
𝑖 = {1, 2, 3, 4} event time points (1: options presented; 2: action taken; 3: outcome presented; 4: 
(terminal) transition screen). We modeled participant choices (𝑐ℎ𝑜𝑖𝑐𝑒%) on each trial 𝑡 of the PRP 35 
task with a softmax choice policy (i.e., categorical logit choice model) that assigns probability to 
choosing each of the two options presented on a trial according to the learned Q-values of the two 
options. For example, for a trial that presents option 2 and option 5, the corresponding action values 
at the moment of option presentation, 𝑄(𝑠$, opt_2) and 𝑄(𝑠$, opt_5), are used to compute the 
probability of selecting each option: 40 
  

𝑃L𝑐ℎ𝑜𝑖𝑐𝑒% = opt_2	M	𝑄(𝑠$, opt_2), 𝑄(𝑠$, opt_5)N = 	
𝑒&((!,*+,_.)/1

𝑒&((!,*+,_.)/1 	+ 	𝑒&((!,*+,_2)/1
 eq. 3 
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where 0 < 𝜏 < 20 is a choice temperature parameter that determines the softmax function slope 
and parameterizes an exploration versus exploitation trade-off where higher temperature values 
lead to a more randomized choice selection policy and lower temperature values lead to a more 
winner-take-all, deterministic choice policy. 
 5 
Valence-Partitioned Reinforcement Learning (VPRL) model 
 

For valence-partitioned RL (VPRL, 44), we extend the standard TDRL framework by 
specifying that two separate value representations are learned for each action, corresponding to the 
rewarding value and punishing value of each action, and that separate (neural) systems signal 10 
reward- and punishment-specific prediction errors to update the reward- and punishment-
associated action values, respectively. In this way, VPRL treats ‘Positive’ (P) and ‘Negative' (N) 
outcomes as though separate, parallel P- and N-systems effectively establish a partition between 
the processing of rewarding and punishing outcomes. P- and N-system action values are estimated 
(𝑄3 and 	𝑄4, respectively) independently, though each  system learns these outcome valence-15 
specific action values using temporal difference learning (see eqs. 4-7). We model the integration 
of 𝑄3 and 	𝑄4 in the simplest manner (i.e., subtraction; eq. 8) when value-based decisions must 
be made, though alternative approaches for integrating these value estimates may be investigated 
in future work.  

In VPRL, P- and N-systems update action value representations via TD-prediction errors 20 
on every episode, but by valence-specific rules (P-system: eq. 4; N-system: eq. 5). The P-system 
only tracks rewarding (i.e., appetitive) outcomes (𝑜𝑢𝑡𝑐𝑜𝑚𝑒! > 0, eq. 4) and the N-system only 
tracks punishing (i.e., aversive) outcomes (𝑜𝑢𝑡𝑐𝑜𝑚𝑒! < 0, eq. 5); both systems encode the 
opposite-valence outcomes and null outcomes as though no outcome occurred.  

Thus, For the P-system, the reward-oriented TD prediction error is: 25 
 

𝛿!3 = Q
𝑜𝑢𝑡𝑐𝑜𝑚𝑒! 	+ 𝛾3 ∗ max" 𝑄3(𝑠!#$, 𝑎>) − 𝑄3(𝑠! , 𝑎!)							𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒! > 0	

								0								 + 𝛾3 ∗ max
"
𝑄3(𝑠!#$, 𝑎>) − 𝑄3(𝑠! , 𝑎!)							𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒! ≤ 0

 eq. 4 

 
where 0 < 𝛾3 < 1 is the P-system temporal discounting parameter (directly analogous to the 
standard TDRL temporal discounting parameter).  

The N-system similarly encodes a punishment-oriented TD prediction error term: 30 
 

𝛿!4 = Q
|𝑜𝑢𝑡𝑐𝑜𝑚𝑒!| + 𝛾4 ∗ max" 𝑄4(𝑠!#$, 𝑎>) − 𝑄4(𝑠! , 𝑎!)						𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒! < 0	

									0									 + 𝛾4 ∗ max
"
𝑄4(𝑠!#$, 𝑎>) − 𝑄4(𝑠! , 𝑎!)						𝑖𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒! ≥ 0

 eq. 5 

 
where 0 < 𝛾4 < 1 is the N-system temporal discounting parameter and |𝑜𝑢𝑡𝑐𝑜𝑚𝑒!| indicates the 
absolute value of the (punishing) outcome. We use the absolute value of the outcome so that the 
N-system positively communicates punishments of varying magnitudes, reflecting a neural system 35 
that increases its firing rate for larger-than-expected punishments and decreases its firing rate for 
smaller-than-expected punishments. 

The P- and N-systems prediction errors update expectations of future rewards or 
punishments of an action, respectively, according to the standard TD learning update rule but for 
each system independently:  40 

 



 

16 
 

𝑄3(𝑠! , 𝑎!) ← 𝑄3(𝑠! , 𝑎!) +	𝛼3𝛿!3 eq. 6 

𝑄4(𝑠! , 𝑎!) ← 𝑄4(𝑠! , 𝑎!) +	𝛼4𝛿!4 eq. 7 

 
where 0 < 𝛼3 < 1 and 0 < 𝛼4 < 1 are learning rates for the P- and N-systems, 𝑄3(𝑠! , 𝑎!) is the 
expected state-action value learned by the P-system, and 𝑄4(𝑠! , 𝑎!) is the expected state-action 
value learned by the N-system.  

We compute a composite state-action value for each action by contrasting the P- and N-5 
system Q-values, 

 
𝑄(𝑠! , 𝑎!) ← 𝑄3(𝑠! , 𝑎!) − 𝑄4(𝑠! , 𝑎!) eq. 8 

which is entered into the categorical logistic choice model (e.g., softmax policy, eq. 3) as for the 
TDRL model above.  
 10 
Alternative reinforcement learning models 
 
 Apart from the TDRL and VPRL models described above, we fit 'asymmetric' versions of 
these models to participant choice behavior on the PRP task. ‘Asymmetric’ TDRL and VPRL 
models are defined by using distinct learning rate parameters for prediction errors that are positive 15 
or negative. For asymmetric TDRL, this amounts to changing eq. 1 to: 
 

𝑄(𝑠! , 𝑎!) ← W	𝑄
(𝑠! , 𝑎!) + 𝛼#𝛿! 							𝑖𝑓	𝛿! ≥ 0	

𝑄(𝑠! , 𝑎!) + 𝛼5𝛿! 							𝑖𝑓	𝛿! < 0  eq. 9 

where 0 < 𝛼# < 1 is the learning rate for positive TD-RPEs and 0 < 𝛼5 < 1 is the learning rate 
for negative TD-RPEs; the rest of the traditional TDRL model remains the same. For asymmetric 
VPRL, eq. 6 and eq. 7 are changed to: 20 

𝑄3(𝑠! , 𝑎!) ← X
	𝑄3(𝑠! , 𝑎!) + 𝛼#3𝛿!3							𝑖𝑓	𝛿!3 ≥ 0	
𝑄3(𝑠! , 𝑎!) + 𝛼53𝛿!3							𝑖𝑓	𝛿!3 < 0

 eq. 10 

𝑄4(𝑠! , 𝑎!) ← X
	𝑄4(𝑠! , 𝑎!) + 𝛼#4𝛿!4							𝑖𝑓	𝛿!4 ≥ 0	
𝑄4(𝑠! , 𝑎!) + 𝛼54𝛿!4							𝑖𝑓	𝛿!4 < 0

 eq. 11 

where  0 < 𝛼#3 , 𝛼53 < 1 are learning rate parameters for positive and negative VP-RPEs, 
respectively, and 0 < 𝛼#4 , 𝛼54 < 1 are learning rate parameters for positive and negative VP-
PPEs, respectively; the rest of the original VPRL model remains the same.    
 
Reinforcement learning hierarchical model parameterization 25 
 

We specified a hierarchical structure to all computational models to fit participant choice 
behavior on the PRP task. Individual-level parameter values are drawn from group-level 
distributions over each model parameter. This hierarchical modeling approach accounts for 
dependencies between model parameters and biases individual-level parameter estimates towards 30 
the group-level mean, thereby increasing reliability in parameter estimates, improving model 
identifiability, and avoiding overfitting (52). These hierarchical models therefore cast individual 
participant parameter values as deviations from a group mean.  
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Formally, the joint posterior distribution 𝑃(𝜙, 𝜃|𝑦,𝑀!) over group-level parameters 𝜙 and 
individual-level parameters 𝜃 for the i-th model 𝑀! conditioned on the data from the cohort of 
participants	𝑦 takes the form 

 

𝑃(𝐰|𝑦,𝑀!) =
𝑝(𝑦|𝒘,𝑀!)𝑝(𝒘|𝑀!)

𝑝(𝑦|𝑀!)
 eq. 12 

where we simplify the notation to 𝑃(𝐰|𝑦,𝑀!), with 𝐰 = {𝜙, 𝜃}) being a parameter vector 5 
consisting of all group- and individual-level model parameters for model 𝑀!. Here, 𝑃(𝑦|𝐰,𝑀!) is 
the likelihood of choice data 𝑦 conditioned on the model parameters and hyperparameters, 
𝑃(𝑦|𝑀!) is the marginal likelihood (model evidence) of the data given a model, and 𝑃(𝐰|𝑀!) is 
the joint prior distribution over model parameters as defined by the model 𝑀!, which can be further 
factorized into the product of the prior on individual-level model parameters conditioned on the 10 
model hyper-parameters, 𝑃(𝜃|𝜙,𝑀!), times the prior over hyper-parameters 𝑃(𝜙|𝑀!). We define 
the prior distributions for individual-level model parameters (e.g., 𝜃6789 = {𝛼, 𝜏, 𝛾} for 𝑀! = 
TDRL) and the hyper-priors of the means −∞ < 𝜇(.) < +∞ and standard deviations 0 < 𝜎(.) <
+∞ of the population-level parameter distributions (e.g., 𝜙6789 = {𝜇; , 𝜇1, 𝜇< , 𝜎; , 𝜎1, 𝜎<}) to be 
standard normal distributions. We estimated all parameters in unconstrained space (i.e., −∞ <15 
𝜇< < +∞) and used the inverse Probit transform to map bounded parameters from unconstrained 
space to the unit interval [0,1] before scaling parameter estimates by the parameter’s upper bound: 
 

𝜇<	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) eq. 13 

𝜎<	~	𝑁𝑜𝑟𝑚𝑎𝑙#(0,1) eq. 14 

𝝉=		~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) eq. 15 

𝝉		 = 	𝑃𝑟𝑜𝑏𝑖𝑡5$L𝜇< +	𝜎< ∗ 𝝉=N ∗ 20 eq. 16 

where bold terms indicate a vector of parameter values over participants. This non-centered 
parameterization (53) and inverse Probit transformation creates a uniform prior distribution over 20 
individual-level model parameters between specified lower and upper bounds. Note that for 
learning rate and temporal discount parameters, the scaling factor (upper bound) was set to 1, 
whereas it was set to 20 for the choice temperature parameter. We used the Hamiltonian Monte 
Carlo (HMC) sampling algorithm in the probabilistic programming language Stan (54) via the R 
package rstan (v. 2.21.2) to sample the joint posterior distribution over group- and individual-level 25 
model parameters for both cohorts individually and for all participants combined into a single 
cohort. For all models and each cohort, we executed 12,000 total iterations (2,000 warm-up) on 
each of 3 chains for a total of 30,000 posterior samples per model parameter. We inspected chains 
for convergence by verifying sufficient chain mixing according to the Gelman-Rubin statistic 𝑅j, 
which was less than 1.1 for all parameters.  30 
 
Reinforcement learning model comparison  
 

We compared the fit of each model to participant choice behavior on the PRP task 
according to their model evidence (i.e., Bayesian marginal likelihood), which represents the 35 
probability or ‘plausibility’ of observing the actual PRP task data under each model (55). In 
Bayesian model comparison, the model with the greatest posterior model probability 𝑝(𝑀!|𝑦) is 
deemed the best explanation for the data 𝑦 and is computed by: 
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𝑃(𝑀!|𝑦) ∝ 𝑃(𝑦|𝑀!)𝑃(𝑀!) eq. 17 

where 𝑃(𝑦|𝑀!) is the model marginal likelihood (i.e., 'model evidence'), the normalizing constant 
of eq. 12, and 𝑃(𝑀!) is the model’s prior probability. The model evidence is defined as: 
 

𝑃(𝑦|𝑀!) = l𝑃(𝑦|𝐰,𝑀!)𝑃(𝐰|𝑀!)𝑑𝐰 eq. 18 

where 𝑃(𝐰|𝑀!) is the prior probability of a model 𝑀!’s parameters 𝐰 before observing any data 5 
and 𝑃(𝑦|𝐰,𝑀!) is the likelihood of data 𝑦 given a model and its parameters.  

Importantly, the marginal likelihood for each model as defined in eq. 18 is an optimal 
measure for performing model comparison as it represents the balance between the fit of each 
model to the cohort’s data (as captured by the first term in the integral) and the complexity of each 
model (as captured in the second term of the integral), integrated over all sampled model parameter 10 
values. In effect, although more complex or flexible models (i.e., more parameters) are able to 
predict a greater variety of behaviors and therefore increase the data likelihood 𝑃(𝑦|𝐰,𝑀!), more 
complex models have a higher dimensional parameter space and therefore must necessarily assign 
lower prior probability to the parameter values 𝑃(𝐰|𝑀!). In this way, the marginal likelihood of a 
model automatically penalizes model complexity, sometimes referred to as the ‘Bayesian Occam 15 
razor’ (55).  

To compare the TDRL and VPRL models (i.e., 𝑀$ and 𝑀., respectively), the relative 
posterior model probability can be defined as: 

 
𝑃(𝑀$|𝑦)
𝑃(𝑀.|𝑦)

=
𝑃(𝑀$) ∗ 𝑃(𝑦|𝑀$)
𝑃(𝑀.) ∗ 	𝑃(𝑦|𝑀.)

 eq. 19 

 20 

where the ratio of posterior model probabilities 𝑃(𝑀$|𝑦)
𝑃(𝑀.|𝑦)
n  is referred to as the “posterior 

odds” of TDRL relative to VPRL; 𝑃(𝑀$) and 𝑃(𝑀.) are the prior probabilities of the TDRL and 
VPRL models, respectively; and the ratio of marginal likelihoods 𝑃(𝑦|𝑀$)

𝑃(𝑦|𝑀.)
n  is termed the 

“Bayes factor”, which is a standard measure for Bayesian model comparison. By assigning equal 
prior probabilities over the set of candidate models, each model’s evidence 𝑃(𝑦|𝑀!) can be used 25 
to rank each model in the set for comparison. The marginal likelihoods are computed as log-scaled 
and therefore the Bayes factor is computed as the difference between log marginal likelihoods for 
two models; a positive value for the Bayes factor indicates greater support for 𝑀$ (the model in 
the numerator of eq. 19), whereas a negative value for the Bayes factor indicates greater support 
for 𝑀.. We estimated the log model evidence (marginal likelihood) for all models for each cohort, 30 
and for all participants combined into a single cohort, using an adaptive importance sampling 
routing called bridge sampling as implemented in the R package bridgesampling (v. 1.1-2; 56). 
Bridge sampling is an efficient and accurate approach to calculating normalizing constants like the 
marginal likelihood of models even with hierarchical structure and for reinforcement learning 
models in particular (56). To further ensure stability in the bridge sampler’s estimates of model 35 
evidence, we performed 10 repetitions of the sampler and report the median and interquartile range 
of the estimates of model evidence. The model with the maximum (i.e., least negative) model 
evidence is the preferred model.  
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 In addition to the standard Bayesian model comparison using model marginal likelihoods, 
we estimated each model’s Bayesian leave-one-out (LOO) cross-validation predictive accuracy, 
defined as a model’s expected log predictive density (ELPD-LOO; 57): 

𝑒𝑙𝑝𝑑9>> =olog	(𝑝(𝑦!|𝑦5!))
4

!?$

 eq. 20 

where the posterior predictive distribution 𝑝(𝑦!|𝑦5!) for held-out data 𝑦! given a set of training 
data 𝑦5!, is 5 
 

𝑃(𝑦!|𝑦5!) = l𝑝(𝑦!|𝐰)𝑝(𝐰|𝑦5!)𝑑𝐰 eq. 21 

The ELPD is an estimate of (i.e., approximation to) the cross-validated accuracy of a given model 
in predicting new (i.e., held-out) participant data, given the posterior distribution over model 
parameters fit to a training set of participant data (57). We approximate this integral via importance 
sampling of the joint posterior parameter distribution given the training data 𝑝(𝐰|𝑦5!) using the 10 
R package loo (v. 2.3.1; 57). 
 We repeated this model comparison analysis (table S1) for the behavior-only cohort and a 
'meta-analytic' cohort combining the ET patients and behavioral participants (N=53). Running the 
model comparison analysis in triplicate allowed us to assess the replicability of the model 
comparison results, and employing multiple model comparison criteria allowed us to assess the 15 
robustness and generalizability of the model comparison results. We elected to focus the 
subsequent behavioral and neurochemical analyses on the basic TDRL and VPRL models since 
the computational differences between these models most directly address the neurobiological 
mechanism that was our main target of investigation: the partitioned signaling of reward and 
punishment prediction errors; all subsequent behavioral analyses and neurochemical time series 20 
analyses of the ET cohort used the computational model fits to the ET cohort alone. 

Model and parameter recovery  
 
 We performed a model recovery analysis to validate that our Bayesian model comparison 
analysis is able to accurately identify the true generative model of choice behavior on the PRP 25 
task. For this model recovery analysis, we simulated choice behavior on the PRP task for both the 
ET (N=11) and behavioral (N=42) cohorts using the mean individual-level parameter values for 
TDRL and VPRL models and then computed model comparison criteria for the TDRL and VPRL 
models to determine whether the model comparison analysis identified the true generative model 
as the best model (table S2).  30 
 To validate that our hierarchical computational model fitting procedure is able to accurately 
estimate model parameters for each participant and for TDRL and VPRL models, we performed a 
parameter recovery analysis. We determined whether the empirical parameter distributions for 
both cohorts were credibly different by computing the difference between the ET and behavioral 
cohorts' group-level TDRL and VPRL parameter distributions, which revealed no credible 35 
differences in any TDRL or VPRL model parameter between the cohorts (fig. S7). Given this 
result, and since the larger sample size in the behavioral cohort increases the robustness of the 
parameter recovery analysis results, we elected to perform the parameter recovery analysis using 
the behavioral cohort's data. We first calculated the mean TDRL and VPRL parameter values for 
each participant in the behavioral cohort to simulate choice data sets (N=42) on the PRP task (using 40 
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new option presentation sequences), re-fitted the TDRL and VPRL models to the simulated PRP 
data set, and then computed the Pearson's correlation coefficient between the mean model 
parameters fitted to the actual participant PRP data and the simulated PRP data.   
 
Electrochemistry data analysis 5 
 
General description of human voltammetry approach 
 
 The human fast-scan cyclic voltammetry (FSCV) protocol used in the current study has 
been extensively described in previous publications (38–41), and therefore we give a brief general 10 
description here. The human voltammetry protocol, which involves the construction of custom 
carbon-fiber microelectrodes for use in the human brain (38,40), is designed as a human-level 
extension of traditional voltammetry protocols used in model organism (e.g., rodent) and ex-vivo 
slice or culture preparations. The specific electrochemical properties of the custom electrodes used 
in the human voltammetry protocol have been validated in the rodent brain as matching those of 15 
rodent electrodes (40). Additionally, the voltage waveform and cycling frequency of the 
stimulating current, as well as the sampling rate of the current time series during the voltage sweeps 
used in the human protocol, are identical to those used in rodent studies (26).  
 The central difference between the human voltammetry protocol used here (38, 39, 41) and 
traditional voltammetry protocols is the statistical method employed to estimate the in-vivo 20 
concentration of different neurochemical analytes. Specifically, in traditional voltammetry 
protocols, estimating the concentration of an analyte of interest (e.g., dopamine) involves 
performing principal components regression on recorded currents (voltammograms), wherein the 
principal component time series used as regressors are derived from an in-vitro data set of 
voltammograms of known concentrations of the analyte of interest. By contradistinction, the 25 
statistical method used for analyte concentration estimation in the human voltammetry protocol 
adopts a supervised statistical learning approach. This approach involves training an elastic net-
penalized linear regression model on in-vitro voltammograms of known concentrations of analytes 
of interest (e.g., dopamine, serotonin), varying levels of pH, and common metabolites of target 
analytes (e.g., DOPAC, 5-HTIAA) or other neurotransmitters (e.g., norepinephrine; 58). In this 30 
protocol, multiple carbon-fiber microelectrodes identical to those used for human recordings were 
used to collect the in-vitro training datasets, and the penalized linear regression model is optimized 
via cross-validation to reduce the out-of-probe error. This penalized cross-validation procedure 
has the added benefits of reducing bias in model performance due to overfitting on training data 
and automatically selecting and regularizing model coefficient values (via the elastic net), thereby 35 
providing reliable estimation performance when recovering analyte concentrations from the 
electrodes used during the human voltammetry experiments. This approach provides more reliable 
estimates of dopamine than principal components regression (38), especially under different pH 
levels. Additionally, this approach reliably and accurately differentiates mixtures of dopamine and 
serotonin from a background of varying pH (39, 41) and changing levels of dopamine or serotonin 40 
metabolites or other neurochemical species like norepinephrine (58).   
 
FSCV carbon-fiber microelectrodes and experimental protocol 
 
 The FSCV protocol as well as the construction of carbon-fiber microelectrode probes and 45 
the specifications of the mobile electrochemistry recording station have been extensively described 
in previous work (38, 40). Briefly, custom carbon-fiber microelectrodes for human FSCV 
experiments were placed in the caudate nucleus as determined by DBS surgery planning for ET 
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patients. We note that electrode placement within the caudate nucleus is different for each patient 
in accordance with the patient-specific trajectory of the DBS electrode used for treatment. The 
FSCV protocol consisted of an equilibration phase and an experiment phase where the 
voltammetry measurement waveform – a triangular waveform starting at -0.6 V, ramping up to a 
peak of +1.4 V at 400 V/s, and ramping back down to -0.6 V at -400 V/s – was first cycled at 60 5 
Hz for 10 minutes to allow for equilibration of the electrode surface followed by a 10 Hz 
application of the waveform for the duration of the experimental window encompassing the 
behavioral task. All recordings of the measurement waveform-induced currents (voltammograms) 
were collected at a 100 kHz sampling rate.    
 10 
in-vitro training data protocol and neurochemical concentration estimation model training 
 
 The in-vitro data collected to train the dopamine concentration estimation model consisted 
of a population of 5 carbon-fiber microelectrodes identical to those used in the human voltammetry 
experiments. Each probe contributed 16 datasets (one per solution mixture), with each dataset 15 
consisting of 2 minutes’ worth of voltammogram recordings in mixture solutions of known 
concentrations of dopamine, DOPAC, and ascorbic acid (from 0-1500nM in 100nM increments), 
with a background of varying pH levels (from 7.2-7.6 in 0.1 increments). All voltammograms in 
the training datasets were sampled at 250 kHz (resulting in 2500 samples per voltammogram) and 
then downsampled by averaging every 15 samples. The voltammograms used to train the 20 
dopamine concentration estimation model were taken over the last 90 seconds of a probe’s 2-
minute recording in a given solution, as these later timepoints are less affected by flow or electrode 
equilibration artifacts that occur in the beginning of recording periods. Each probe therefore 
contributed a total of 900 voltammograms per each of 16 solution mixtures resulting in a total of 
14,400 labeled samples per probe, each corresponding to the probe’s response to mixed levels of 25 
dopamine, DOPAC, ascorbic acid, and pH. 
 Using this in-vitro training data set, we fit a penalized linear regression model using the 
elastic net algorithm (59) to predict known concentrations of each analyte, optimized using 10-
fold cross-validation. In this model, the target variable (y) is an N-by-4 matrix of known levels of 
dopamine, DOPAC, ascorbic acid, and pH, with N = 12,960 samples (9/10ths of the 14,400 total 30 
samples, with 1/10 held-out for cross-validation); the predictor variable matrix (x) is an N-by-498 
matrix of the corresponding raw and differentiated voltammograms (167 time points per down-
sampled voltammogram, plus 166 time points for its first derivative and 165 time points for its 
second derivative). The linear model coefficients (𝛽) are determined by minimizing the residual 
sum of squares, subject to the elastic net penalty (59):  35 
 

min
(@",@)∈ℝ#$!

1
2𝑁oL𝑦! − 𝛽C − 𝑥!D𝛽N

.
4

!?$

+ 𝜆𝑃;(𝛽) eq. 22  

where 𝜆 is a penalty term that weighs the influence of the elastic net penalty, 𝑃;(𝛽): 
 

𝑃;(𝛽) = (1 − 𝛼)
1
2
‖𝛽‖ℓ%

. + 𝛼‖𝛽‖ℓ! eq. 23 

where 0 < 𝛼 < 1 parameterizes the relative weighting between the ridge (ℓ.-norm) and lasso (ℓ$-
norm) regularizations. The optimal values of 𝛽, 𝜆, and 𝛼 are determined using a 10-fold cross-40 
validation procedure via the cvglmnet function of the glmnet package in MATLAB. Here, we fixed 
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𝛼 = 1 and used the smallest lambda value to estimate dopamine concentrations from in vivo 
experimental recordings.  
 
Dopamine time series analysis  
 5 
 Time series of dopamine concentrations for each participant were generated from the 
optimized elastic net linear regression model with 100 millisecond temporal resolution. We first 
cut out individual trials’ time series from 1 second (10 samples) before the trial’s option 
presentation screen to 100 milliseconds (1 sample) before the next trial’s option presentation, z-
scored the dopamine concentrations within each trial, and smoothed the within-trial dopamine time 10 
series using a 0.3 second (3 sample) sliding-window lagging average (41). From these individual 
trial time series, we extracted individual event-related dopamine responses lasting from 0-700 
milliseconds following option presentation, action selection, and outcome presentation. Parametric 
statistical testing consisted of performing either two-way ANOVA tests (prediction error sign, 
time) of dopamine responses following all events (Fig. 2) or independent samples t-tests at single 15 
time points to compare dopamine responses to positive and negative reward and punishment 
prediction errors following all events (Fig. 2). Non-parametric statistical testing (fig. S4) consisted 
of conducting 50,000 permutation tests where we computed the mean difference in dopamine 
levels in response to positive and negative RPEs and PPEs at each time point and computed p-
values as the percentage of permuted mean difference measures that were greater than the absolute 20 
value of the actual mean difference. 
 
Dopamine prediction error ROC decoding analysis 
 
For the receiver operating characteristic (ROC) analysis (Fig. 3), we trained logistic regression 25 
models on segments of event-related dopamine fluctuations to classify positive and negative 
reward and punishment prediction errors. We trained separate classifiers using either TDRL or 
VPRL computational model-defined fluctuations; that is, the event-related dopamine signals used 
to train each classifier differed according to whether TDRL and VPRL models specified an event 
as being either a positive or negative RPE or PPE. For the RPE classifiers, we trained the logistic 30 
models for TDRL and VPRL using samples from 200-300ms of the dopamine fluctuations; for the 
PPE classifiers, we used samples from 400-600ms of the dopamine fluctuations. These RPE- and 
PPE-specific temporal windows were chosen based on our findings from the dopamine time series 
analysis (Fig. 2). From the fitted classifiers, we computed the area under the ROC curve (auROC) 
separately for the TDRL- and VPRL-based classifiers using the perfcurve function in MATLAB. 35 
We compared the relative performance of the TDRL and VPRL classifiers for decoding positive 
and negative RPEs and PPEs using a permutation test where we computed the difference in auROC 
values across 50,000 iterations and compared the true auROC values to the permutation test null 
distribution to obtain p-values.  

 40 
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Fig. S1. Alternative computational theories of valence processing in reinforcement learning. 
(A) Traditional temporal difference reinforcement learning (TDRL) theory represents rewards and 
punishments unidimensionally as opposite ends of a single continuous valence dimension. The 
physiological support for this traditional view is limited by how dopamine neurons might encode 5 
aversive outcomes. (B) A valence-partitioned reinforcement learning (VPRL) approach instead 
specifies that rewards and punishments are processed by independent valence-processing systems 
in parallel. The space spanned by the activity within these two systems of VPRL (the Positive 
system and Negative system {±P, ±N} space) captures all combinations of possible valent 
experiences. 10 
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Fig. S2. Probabilistic reward and punishment task incentive structure. Depiction of the true 
expected value of the six options throughout the three phases of the task. Each option has either a 
low (25%), medium (50%), or high (75%) probability of gaining or losing money; icon-to-
probability and icon-to-outcome-valence mappings are randomized across participants. In phase 5 
1, trials 1-25, participants see two of three ‘gain/no-gain’ options, which give binary monetary 
gains ($0 or $1) according to fixed probabilities; the blue icon corresponds to the 75% gain option 
(value = $0.75), the brown icon corresponds to the 50% gain option (value = $0.50), and the green 
icon corresponds to the 25% gain option (value = $0.25). In phase 2, trials 26-75, participants 
either see two of the three ‘gain/no-gain’ options or two of three ‘loss/no-loss’ options, which give 10 
binary monetary losses ($0 or -$1), and there are an equal number of 'gain/no gain' and 'loss/no 
loss' trials (i.e., 25 each); the purple icon corresponds to 25% loss (value = -$0.25), the pink icon 
corresponds to 50% loss (value = -$0.50), and yellow icons correspond to 75% loss (value = -
$0.75). In phase 3, trials 76-150, the reversal occurs wherein the outcome magnitude of every 
option changes (the associated probabilities remain the same); participants see any combination of 15 
two of the six options in phase 3. In phase 3, the 75% gain icon now gives binary $0/$0.50 returns 
(value = $0.38), the 50% gain icon gives $0/$1.50 returns (value = $0.75), and the 25% gain icon 
gives binary $0/$2.50 returns (value = $0.63); the 75% loss icon now gives binary $0/-$0.25 
returns (value = -$0.19), the 50% loss icon gives $0/-$0.75 returns (value = -$0.38), and the 25% 
loss icon gives $0/-$1.25 returns (value = -$0.31). There are no fixed pairings of options in the 20 
task. 
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Fig. S3. Descriptive analysis of human PRP task performance. Comparison of (A) time series 
and (B) cumulative percent correct choices for the ET patient cohort (N=11) PRP task performance 
relative to simulated random task performance indicated that ET patients make optimal choices 
increasingly over time and significantly more often than chance overall; statistical results in (B) 5 
are from matched-samples t-test. (C) and (D) are same as (A) and (B) but for the behavioral cohort 
(N=42). There was no significant difference in cumulative percent correct choices between the ET 
patients and behavioral cohort (two-samples t-test, t(51) = -1.7, p = 0.09). 
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Fig. S4. Permutation testing of differences in dopamine fluctuations in response to TDRL 
and VPRL prediction error signals. Comparing  the output of 50,000 permutation tests 
(histograms) to the mean differences in the dopamine levels (vertical red bars) indicates 
statistically significant time points at which dopamine levels distinguish (A) TD-RPEs across all 5 
trials, (B) TD-RPEs on reward trials, (C) TD-RPEs on punishment trials, (D) VP-RPEs across all 
trials, and (E) VP-PPEs across all trials. P-values are calculated as the percentage of permutation 
test outputs that are greater than the actual mean difference at each time point. This non-parametric 
analysis recapitulated the results of the parametric analyses reported in the main text, namely that 
no differences were found for (A) TD-RPEs across all trials or for (C) TD-RPEs on punishment 10 
trials and that statistically significant differences were found at 200-300msec for (B) TD-RPEs 
and (D) VP-RPEs on reward trials and at 400-600msec for (E) VP-PPEs on punishment trials. 
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Fig. S5. Valence-partitioning in human choice behaviors. Posterior parameter distributions for 
(A, top) TDRL and (B, top) VPRL models for the ET patient cohort (N=11), with individual 
patients’ parameter values shown as dots and the group-level distributions represented as violin 
plots, with the 95% highest density interval (HDI) indicated by vertical black bars. In (B, top), 5 
grey lines connect individual patient parameter values. Time series of (A, bottom) TDRL and (B, 
bottom) VPRL model-derived action value estimates (ribbons) plotted against the true action 
values (dashed grey lines); ribbons depict the mean expected value across participants (bold line) 
± 1 SEM. (C) Asymmetries between reward and punishment systems in VPRL are depicted by 
the difference between  learning rates (light blue) and temporal discount factors (dark blue) for 10 
both the group-level (distributions) and individual-level parameter values (histograms); vertical 
dashed black line demarcates no difference parameter distributions, horizontal blue lines depict 
the 95% HDI of the group-level distributions. (D)-(F) are the same as (A)-(C) but for the behavioral 
cohort (N=42). For the ET cohort, at the group-level (C), there were no credible differences in 
VPRL reward- and punishment-system parameters; at the individual-level (B), 10 out of 11 ET 15 
patients demonstrated a higher learning rate for punishments than for rewards (mean individual 
difference = -0.17 [-0.86 0.53]), and all 11 ET patients demonstrated a higher temporal discount 
factor for rewards relative to punishments (mean individual difference = 0.38 [-0.22 1.0]). For the 
behavioral cohort, at the group-level (F) the reward discount factor was credibly larger than the 
punishment discount factor (𝜸𝑽𝑷𝑹𝑳𝑷 − 𝜸𝑽𝑷𝑹𝑳𝑵  = 0.42 [0.20 0.65]); at the individual-level, 38 out of 20 
42 participants had a larger punishment learning rate than reward learning rate (mean individual 
difference = -0.24 [-0.90 0.33]), and all 42 participants had a larger reward temporal discount 
factor than punishment temporal discount factor (mean individual difference = 0.36 [-0.19 0.85]). 
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Fig. S6. Time series of TDRL- and VPRL-derived action values for ET patients. For each 
participant, we used the fitted parameters for TDRL and VPRL to derive the learned action values 
for the rewarding and  punishing options on the PRP task for (A,B) the ET cohort and (C,D) the 
behavior-only cohort. The bold lines in the green and blue ribbons represent the mean expected 5 
values for TDRL and VPRL across participants, respectively, and the shaded regions represent ± 
1 SEM; black asterisks indicate p < 0.05 for matched-pairs t-tests, and red asterisks indicate p < 
0.05 Bonferroni corrected t-tests. (C,D) are the same as (A,B) but for the behavior-only cohort. 
For the ET cohort, TDRL and VPRL model-derived learned values for (A) reward-associated 
options were not significantly different (two-way ANOVA (model, time): F(model) =  0.79, p = 10 
0.38, F(time) = 2.42; p = 5.8e-14), whereas the learned values for (B) punishment-associated 
options were significantly different (two-way ANOVA (model, time): F(model) = 12.6, p = 4.3e4; 
F(time) = 10.6, p < 1.0e-16). Post-hoc paired-samples t-tests on the difference between the true 
value of each option and the TDRL or VPRL model-derived learned values across ET participants 
revealed that the errors of VPRL-derived learned values compared to ground-truth were 15 
significantly different from TDRL-derived learned values for punishment-associated options when 
they were first introduced in phase 2. For the behavior-only cohort, we found there were no 
significant difference between (C) reward-associated options (two-way ANOVA (model, time): 
F(model) = 3.12, p = 0.08; F(time) = 2.3, p = 6.7e-13) but did find significant differences for (D) 
punishment-associated options (two-way ANOVA (model, time): F(model) = 13.7, p = 2.0e-4); 20 
F(time) = 12.3, p < 1.0e-16), which again corresponded to differences in value estimates of 
punishment-associated options during phase 2. 
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Fig. S7. TDRL and VPRL parameter recovery. Contrasting the ET and behavioral cohort group-
level parameter distributions for (A) the TDRL model revealed no credible differences in posterior 
distributions for all model parameters; horizontal black lines indicate the median value of the 
distribution, and the vertical black lines indicate the 95% highest density interval (HDI) of the 5 
distribution. The parameter recovery results for each TDRL model parameter is shown in the 
subpanel scatter plots, with rho and p-values computed using Pearson's correlation. (B) is the same 
as (A) but for VPRL model parameters. 
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Table S1. Model comparison results. For both marginal likelihood (model evidence: ME) and 
the posterior predictive density (PD) for each model, reported values are the median estimate (log 
scale), with the parenthetical values reflecting either the interquartile range (model evidence) or 
the Monte Carlo standard error (predictive density) of estimation procedures. Note: given the 
hierarchical model specification, the total number of parameters for each model and each cohort 5 
is calculated as (2*K + K*N), where K is the number of unique model parameters, N is the number 
of participants in a cohort, the first product (2*K) represents the number of group-level parameters, 
and the second product (K*N) represents the number of individual-level parameters. 
  

  Essential Tremor (n=11) Behavioral  
(n=42) 

Combined  
(n=53) 

Model K ME PD ME PD ME PD 

TDRL 3 -1020.5 
(0.09) 

-1012.2 
(31.2) 

-3479.2 
(2.7) 

-3430.7 
(95.4) 

-4499.9 
(2.0) 

-4444.3 
(105) 

VPRL 5 -987.2 
(0.09) 

-975.5 
(43.9) 

-3375.4 
(3.8) 

-3319.0 
(103) 

-4113.5 
(3.6) 

-4300.1 
(114) 

Asymmetric 
TDRL 4 -1001.1 

(0.1) 
-988.7 
(38.9) 

-3377.4 
(2.9) 

-3326.1 
(102) 

-4177.8 
(2.9) 

-4315.7 
(113) 

Asymmetric 
VPRL 7 -986.3 

(0.09) 
-971.3 
(45.0) 

-3359.3 
(2.0) 

-3297.2 
(105) 

-3996.5 
(4.0) 

-4271.9 
(117) 
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Table S2. Model recovery results. For both marginal likelihood (model evidence; ME) and 
posterior predictive density (PD), reported values are the median estimate (log scale), with the 
parenthetical values reflecting either the interquartile range (model evidence) or the Monte Carlo 
standard error (predictive density) of estimation procedures. The differences in model evidence (D 
ME), which corresponds to the Bayes Factor, and differences in predictive density (D PD) are also 5 
reported as median estimates with corresponding error values; all difference measures were 
computed as (TDRL − VPRL), and as such positive difference values indicate greater support for 
TDRL and negative difference values indicate greater support for VPRL. 
 

  Essential Tremor (n=11) Behavioral (n=42) 

True 
Model 

Simulated 
Model ME D ME PD D PD ME D ME PD D PD 

TDRL 
TDRL -933.1 

(0.06) 6.1 
(0.08) 

-922.3 
(37.2) 3.2 

(3.6) 

-3214.9 
(0.2) 31.3 

(0.35) 

-3175.2 
(86.6) 28.2 

(6.2) 
VPRL -939.2 

(0.06) 
-925.5 
(36.5) 

-3246.2 
(0.3) 

-3203.4 
(85.5) 

VPRL 
TDRL -962.4 

(0.07) -9.6 
(0.12) 

-952.5 
(38.6) -13.8 

(9.5) 

-3166.8 
(0.27) -36.9 

(0.46) 

-3137.0 
(84.9) -47.0 

(14.6) 
VPRL -952.8 

(0.08) 
-938.7 
(42.0) 

-3129.8 
(0.36) 

-3090.0 
(87.5) 


