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SUMMARY
The noradrenaline (NA) system is one of the brain’s major neuromodulatory systems; it originates in a small
midbrain nucleus, the locus coeruleus (LC), and projects widely throughout the brain.1,2 The LC-NA system is
believed to regulate arousal and attention3,4 and is a pharmacological target in multiple clinical conditions.5–7

Yet our understanding of its role in health and disease has been impeded by a lack of direct recordings in
humans. Here, we address this problem by showing that electrochemical estimates of sub-second NA dy-
namics can be obtained using clinical depth electrodes implanted for epilepsy monitoring. We made these
recordings in the amygdala, an evolutionarily ancient structure that supports emotional processing8,9 and re-
ceives dense LC-NA projections,10 while patients (n = 3) performed a visual affective oddball task. The task
was designed to induce different cognitive states, with the oddball stimuli involving emotionally evocative
images,11 which varied in terms of arousal (low versus high) and valence (negative versus positive). Consis-
tent with theory, the NA estimates tracked the emotional modulation of attention, with a stronger oddball
response in a high-arousal state. Parallel estimates of pupil dilation, a common behavioral proxy for
LC-NA activity,12 supported a hypothesis that pupil-NA coupling changes with cognitive state,13,14 with
the pupil and NA estimates being positively correlated for oddball stimuli in a high-arousal but not a low-
arousal state. Our study provides proof of concept that neuromodulator monitoring is now possible using
depth electrodes in standard clinical use.
RESULTS

Electrochemistry on clinical depth electrodes
Recent years have seen the novel application of electrochem-

istry during awake deep brain stimulation (DBS) surgery, in

which electrodes are implanted for the management of

movement disorder symptoms (e.g., Parkinson’s disease).15–19

While providing the first estimates of fast neuromodulator

release from the human brain, these recordings require

custom-made carbon-fiber electrodes and have naturally
Current Biology 33, 5003–5010, Novemb
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been constrained to the basal ganglia, mainly dorsal striatum,

by the surgical procedure. However, an accurate understand-

ing of neuromodulatory systems in human health and disease

requires an ability to study their function across the brain,20,21

especially in the case of the locus coeruleus (LC)-noradrenaline

(NA) system, which plays a minimal role in the regulation of

striatal activity.2

Here, we present an approach for obtaining sub-second neuro-

modulator estimates from clinical depth electrodes that are im-

planted throughout the brain for phase II epilepsy monitoring.22
er 20, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 5003
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Electrochemistry on clinical depth electrodes

(A) Sketch of electrochemical approach.

(B) We made electrochemical recordings in the amygdala of three patients while they performed the task shown in Figure 2A.

(C) In vitro evaluation of electrochemical approach. Themacro-micro electrodes were explanted from the three patients who performed the task in Figure 2A. The

Behnke-Fried electrodeswere explanted from the amygdala of three patients at another hospital and were included to demonstrate generalizability. Dots indicate

the average predicted NA concentration (nanomoles, nM) for single-analyte solutions that only contained NA (green), DA (blue), or 5-HT (red). Green diamonds

indicate mixture solutions that contained DA and/or 5-HT in addition to NA. Predictions were from a 10-fold cross-validation and pooled across patients. R2

values were obtained by regressing the predicted NA concentration against the true NA, DA, or 5-HT concentration. Error bars represent 95% confidence in-

tervals but are not visible at this scale. See Figure S1 for in vitro evaluations for DA and 5-HT.
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Patients with medication-resistant epilepsy can become eligible

for ablation of epileptic foci. To help localize such foci, depth elec-

trodes are implanted in brain regions relevant to each patient’s

condition and neuronal activity is tracked over multiple days in

an epilepsy monitoring unit (EMU). For years neuroscientists

have utilized these electrodes for intracranial electrophysi-

ology23—we show that they can be used for intracranial electro-

chemistry, too.

The workflow is summarized in Figure 1A. In brief, the neuro-

surgeon implants depth electrodes (here, Ad-Techmacro-micro)

into potential epileptic loci. During their stay in the EMU, the pa-

tient performs a research task while an electrode in a region of

interest is used for voltammetric recordings. Once epilepsy

monitoring is complete, the neurosurgeon explants the elec-

trodes. A signal prediction model is then created by exposing

the relevant electrode to labeled concentrations of NA, dopa-

mine (DA), serotonin (5-HT), and pH in a controlled in vitro

setting. Finally, to generate in vivo neuromodulator estimates,

the signal prediction model is applied to the voltammetric re-

cordings from the patient brain.

We applied this approach in three patients using electrodes

implanted in the amygdala (Figure 1B), an evolutionarily

conserved structure that supports emotional processing8,9

and receives dense LC-NA projections.10 In vitro evaluation

using out-of-training data showed that our approach can

accurately detect NA and does not confuse NA with DA or

5-HT (Figure 1C, left). Our approach also generalized to

another type of depth electrode explanted from the amygdala

of three patients at another hospital (Ad-Tech Behnke-Fried;

Figure 1C, right).
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Visual affective oddball task
The three patients performed a visual affective oddball task (Fig-

ure 2A). The task involved the rapid presentation of unique im-

ages from the International Affective Picture System (IAPS)11

as surprising (oddball) stimuli and a checkerboard image as

the standard stimulus. The IAPS images were selected based

on the content ratings provided by the IAPS and grouped within

a block design such that every block contained images of the

same emotional category. There were four emotionally evocative

blocks, which varied in terms of valence (negative versus posi-

tive) and arousal (low versus high), and two emotionally neutral

blocks. To keep patients engaged, they were told to press a but-

ton whenever an oddball stimulus was shown.

In parallel to the electrochemical recordings, we monitored

pupil dilation, a widely used behavioral proxy for activity in the

LC-NA system.12 The EMU setting meant that we did not have

full control over extraneous variables, such as head position,

eyemovement, and room lighting, which can affect pupil dilation.

We therefore also ran the task in a group of control subjects (n =

17) in a standard lab setting and used correspondence between

the patient and the control data as an indicator of data quality.

Behavioral validation of experimental framework
To validate the pupil data from the EMU and the task, we first

tested for an oddball pupil dilation response (PDR), by applying

a linear mixed-effects regression in which we predicted the pupil

estimate at each time point using stimulus type (standard = �1;

oddball = 1). This analysis returned an oddball PDR: pupil dilation

was larger for oddball than standard stimuli, and this difference

was largest around 1.2 s after stimulus onset (Figure 2B, top).
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Figure 2. Experimental framework and

behavioral results

(A) Patients performed a visual affective oddball

task while we simultaneously measured NA in the

amygdala and pupil dilation with sub-second

temporal resolution. The task was divided into six

blocks of 100 images; the images were shown for

1 s and separated by 1 s blank intervals. Within

each block, 80% of the images were a checker-

board image (standard) and the remaining 20%

were unique IAPS images (oddball). See Fig-

ure S2A for IAPS content ratings and measured

illuminance for the different image sets.

(B) Oddball PDR for (top) patients and (bottom)

controls across all trials.

(C) Oddball PDR for (top) patients and (bottom)

controls within each condition.

(B and C) For each trial, we smoothed the time

series using a 0.5 s causal filter, Z scored the

smoothed data and removed any linear drift. Lines

indicate the difference between the average time

series for oddball and standard trials. Triangles

indicate the significance (p < 0.050) of a predictor

and their direction indicates the sign of the effect

(down, negative; up, positive). Only significant

predictors are shown. See Figure S2B for an

analysis in raw units, which also considers image

illuminance and trial history.
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Wenext analyzed oddball trials only, now predicting the pupil es-

timates using emotional valence (negative =�1; neutral = 0; pos-

itive = 1), emotional arousal (low = �1; neutral = 0; high = 1),

emotionally evocative (neutral =�1; evocative = 1), and an inter-

action between valence and arousal. The valence, arousal, and

evocative terms were specified at the block level as per our

task design (Figure 2A); valence and arousal were considered

features of blocks involving emotionally evocative IAPS images

only (Figure S2A), with the evocative term capturing any differ-

ence between these blocks and emotionally neutral blocks.

This analysis identified a main effect of valence and an interac-

tion between valence and arousal, with pupil dilation strongest

for IAPS images characterized by negative valence and high

arousal (Figure 2C, top). In further support of the quality of the

pupil data collected in the EMU, these effects closely resembled

those observed in the control group (Figures 2B and 2C, bottom).

Finally, we examined button presses. Indicative of a high level of

task engagement, patients detected nearly all oddball stimuli

(patients, 94%–100%; controls, 96%–100%). An analysis of

the impact of the task factors on reaction times did not return

any effects in the patient group, but it identified an effect of

arousal in the larger control group, with responses being slower

in high-arousal blocks (Figure S2C).

NA estimates track the emotional modulation of
attention
Our task was designed to probe attention-related processes, by

randomly interspersing the repeated presentation of a checker-

board image with IAPS images, and to induce different cognitive
states, by grouping the emotional content of the IAPS images

within a block design (Figure 2A). To quantify the impact of these

factors on NA dynamics, we employed a linear mixed-effects

regression in which we predicted single-trial estimates of the

NA response around stimulus presentation using stimulus type,

emotional valence, emotional arousal, emotionally evocative,

and interactions between these terms.

This analysis identified a positive main effect of arousal and a

positive interaction between stimulus type and arousal (Fig-

ure 3A; arousal, t(1,790) = 3.34, p < 0.001; type 3 arousal,

t(1,790) = 4.35, p < 0.001). To unpack these effects, we adopted

a simple-effects approach, quantifying the impact of arousal for

each stimulus type and the impact of stimulus type for each level

of arousal. Indicating that NA ismodulated by emotional content,

we found that the estimated NA response for oddball stimuli was

higher in high-arousal than low-arousal blocks (Figure 3B; effect

of arousal for oddball stimuli, t(1,790) = 4.30, p < 0.001), whereas

the estimated NA response for standard stimuli did not differ be-

tween these blocks (Figure 3B; effect of arousal for standard

stimuli, t(1,790) =�1.13, p = 0.259). We note that the positive ef-

fect of arousal for oddball stimuli remained after controlling for

reaction times in an analysis of oddball trials only (arousal,

t(346) = 4.00, p < 0.001). Indicating that these effects reflect

contextual modulation of the attentional salience of surprising

stimuli, we found that the estimated NA response was higher

for oddball than standard stimuli in high-arousal blocks but lower

in low-arousal blocks (Figure 3B; effect of type for high arousal,

t(1,790) = 2.26, p = 0.024; effect of type for low arousal, t(1,790) =

�2.09, p = 0.037). While a stronger response for oddball than
Current Biology 33, 5003–5010, November 20, 2023 5005



Figure 3. NA estimates track the emotional

modulation of attention

(A) Regression coefficients ± SE from linear mixed-

effects regression described in main text.

*p < 0.050; **p < 0.010; ***p < 0.001.

(B) Single-trial NA estimates (mean ± SE) sepa-

rated by emotional arousal and stimulus type.

(A and B) Single-trial NA estimates were calculated

as the mean NA estimate over a 1 s window

centered on stimulus onset minus the mean NA

estimate over the preceding 0.5 s and Z scored

across trials for each patient. See Figure S3 for

analysis of DA and 5-HT estimates.
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standard stimuli is in line with theories of LC-NA function, there

is, to our knowledge, no account that predicts the opposite rela-

tionship. In addition to these arousal-related effects, the analysis

identified a positive main effect of emotionally evocative (Fig-

ure 3A; evocative, t(1,790) = 1.98, p = 0.048), indicating that

the estimated NA response was overall higher in emotionally

evocative than emotionally neutral blocks.

While not the focus of our study, our electrochemical

approach also returned estimates of DA and 5-HT. Applying

the same analysis as for NA, we found that the estimated DA

response for oddball stimuli was higher in emotionally evocative

than emotionally neutral blocks, whereas the estimated 5-HT

response was overall lower in emotionally evocative than

emotionally neutral blocks (Figure S3). The DA and 5-HT results

help clarify the specificity of the NA results, with the estimated

NA response reflecting contextual modulation of attention in

the most emotion-specific manner.

Coupling between pupil and NA estimates varies with
emotional arousal
We next turned to the relationship between the pupil and NA es-

timates. The presence of pupil-NA coupling would both support

the use of pupillometry as an indirect measure of LC-NA activ-

ity12 and corroborate our electrochemical approach. In addition

to providing the first-ever characterization of the link between

pupil dilation and NA in a key LC-NA projection target, these

data may also help us understand how pupil-NA coupling

changes with cognitive state.13,14 We used the estimated pupil

and NA time series across all trials to test for a general presence

of pupil-NA coupling and—guided by the NA results—the time

series for oddball trials in low- and high-arousal blocks to test

for a dependence of pupil-NA coupling on cognitive state. For

each condition of interest, we quantified the relationship be-

tween the estimated pupil and NA time series averaged across

patients in two ways. First, we conducted simple (Pearson) cor-

relations. Second, as simple correlations cannot capture time-

varying relationships, we also fitted a hidden Markov model

(HMM), a popular approach for unsupervised statistical learning

of multivariate time series data that can identify changes in cor-

relation without making a priori assumptions about when these

changes might occur.24,25

In support of pupillometry as an indirect measure of LC-NA

activity and our electrochemical approach, we found a positive

correlation between the estimated pupil and NA time series aver-

aged across all trials (Figure 4, top left; r = 0.37, p = 0.004). In
5006 Current Biology 33, 5003–5010, November 20, 2023
addition, in line with the hypothesis that pupil-NA coupling

depends on cognitive state, we found a negative correlation

between the average estimated pupil and NA time series for

low-arousal oddball trials (Figure 4, top middle; r = �0.59,

p < 0.001) but a positive correlation for high-arousal oddball trials

(Figure 4, top right; r = 0.74, p < 0.001). Importantly, the HMM

approach showed that the positive correlation across all trials

was strongest (Figure 4, bottom left), and that the difference in

the sign of the correlation between low-arousal and high-arousal

oddball trials was largest (Figure 4, bottommiddle versus bottom

right), around stimulus presentation.

DISCUSSION

The LC-NA system affects neural activity across the brain.1,2 This

influence, often summarized as an impact on global brain

states,26,27 has been the target of theoretical models cast at

different levels of description, including neuronal processes

such as gain control and cognitive processes such as arousal

and attention.3,4,28,29 Clinically, the LC-NA system is implicated

in multiple conditions, perhaps most prominently attention-

deficit/hyperactivity disorder.7,30–32 Yet there has not been a

way to directly measure NA in humans. Here, we provide proof

of concept that electrochemical estimates of sub-second NA

dynamics can be obtained using clinical depth electrodes im-

planted for epilepsy monitoring.

By applying our electrochemical approach in human amygdala

together with a visual affective oddball task and pupillometry, we

tested theoretical predictions about the role of NA in arousal and

attention and examined the relationship between pupil dilation

and NA. In our task, IAPS images of a particular emotional cate-

gory were shown on 20%of trials (oddball) and a checkboard im-

age on the remaining 80% of trials (standard). In line with a hy-

pothesis that NA tracks the emotional modulation of attention,

we found that the NA response around stimulus presentation

discriminated (1) between IAPS images that induced states of

high versus low emotional arousal and (2) between the surprising

IAPS images and the non-surprising checkerboard image within

these two emotional states.

Comparison of the pupil and NA estimates supported the use

of pupil dilation as a window into the LC-NA system.12 In line with

earlier reports that activity in LC neurons33 and LC-NA axonal

projections34 can predict pupil dilation, we found a positive pu-

pil-NA correlation for all trials regardless of stimulus type or

emotional context. However, pupil dilation is influenced by
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each block.
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multiple systems,12 and there is evidence that pupil-NA coupling

may change with cognitive state.13,14 Indeed, we found a posi-

tive pupil-NA correlation for the surprising IAPS images in a

high-arousal state but a negative correlation in a low-arousal

state. While a negative correlation is unexpected, it can arise

when two systems, such as the pupil and LC-NA systems,35

are only driven by partially overlapping inputs. If there is not a

strong common input to synchronize the systems, then the

non-overlapping inputs may drive their responses, and if these

inputs happen to go in the opposite directions, then negative

correlations may arise.

Prior to this study, human electrochemistry has been per-

formed during awake DBS surgery.15–19 With minimal deviations

from the standard of care, and no reported changes in infection

rates,36 a custom-made carbon-fiber electrode can be inserted

along the same path as the clinical electrodes used for functional

mapping of the DBS target. The capacity to perform human elec-

trochemistry in the EMU complements the DBS-based approach

in multiple ways. It enables electrochemical recordings from a

wider range of neural structures, and it allows for the study of

physiological, behavioral, and cognitive processes that cannot

be probed within the constraints of an acute surgical setting.

For example, the LC-NA system is a pharmacological target in

sleep disorders,37 and it will be possible to monitor NA as pa-

tients transition betweenwakefulness and sleep. Similarly, a pro-

portion of patients will be undergoing pharmacotherapy, such as

selective serotonin reuptake inhibitors (SSRIs) or serotonin-NA
reuptake inhibitors (SNRIs), for psychiatric symptoms, and it

will be possible to compare neuromodulation before and after

drug intake.

The brain’s major neuromodulatory systems support critical

physiological, behavioral, and cognitive processes and have

been implicated in a variety of clinical conditions.While high-pre-

cisionmethods for studying neuromodulation are available in an-

imals,38,39 similar advances are needed in humans to accelerate

translation and advance our understanding of health and dis-

ease. The neuromodulatory machinery may be conserved

across species, but it also operates on species-unique neural

hardware and cognitive software in humans. By showing that

neuromodulator estimates can be obtained from depth elec-

trodes already in standard clinical use in the conscious human

brain, our study opens the door to a new area of research on

the neuromodulatory basis of human health and disease.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Noradrenaline (NA) Sigma-Aldrich A7257; CAS: 51-41-2

Dopamine (DA) Sigma-Aldrich H8502; CAS: 62-31-7

Serotonin (5-HT) Sigma-Aldrich H9523; CAS: 153-98-0

Reagent for PBS: NaCl Sigma-Aldrich S7653-1K; CAS: 7647-14-5

Reagent for PBS: KCl Sigma-Aldrich P9333-1K; CAS: 447-40-7

Reagent for PBS: Na2HPO Sigma-Aldrich S7907-1K; CAS: 7558-79-4

Reagent for PBS: KH2PO4 Sigma-Aldrich P5655-1K; CAS: 7778-77-0

Deposited data

Neural, pupil, and behavioral This paper https://github.com/danbang/article-NA-pupil-IAPS-oddball

Software and algorithms

pCLAMP Molecular Devices pCLAMP 10 Axon Instruments

MATLAB MathWorks MATLAB R2022a

Python Van Rossum and Drake40 Python 3.9.7

R R Core Team41 R 4.2.0

Stan Carpenter et al.42 Stan 2.21.0

TensorFlow Abadi et al.43 TensorFlow 2.6.0

Keras Chollet44 Keras 2.6.0

Velocity-based blink detection algorithm

with cubic-spline reconstruction

Mathôt and Vilotijevi�c45 https://pydatamatrix.eu/

Code for reproducing figures This paper https://github.com/danbang/article-NA-pupil-IAPS-oddball

HMM tutorial This paper https://github.com/Beniamino92/mvHMM/tree/main/

HMM-NE-pupil-IAPS-oddball

Other

Head stage Molecular Devices CV-7B-EC Axon Instruments

Amplifier Molecular Devices Multiclamp 700B Axon Instruments

A/D converter Molecular Devices Digidata 1440A Axon Instruments

Force function (TTL) generator Tektronix AFG320

Isolation transformer Tripp Lite IS500HG Isolation Transformer

Macro-micro electrode Ad-Tech MM16A-SP05X-000

Benhke-Fried electrode Ad-Tech MM16A-SP05X-000 (outer depth electrode) and

WB09R-SP00X-0B6 (micro-wire bundle)

Eye-tracking system Tobii Tobii Pro Spectrum
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dan Bang (danbang@

cfin.au.dk).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d De-identified neural, pupil, and behavioral data is available at GitHub (see key resources table).

d Code for reproducing figures is available at GitHub (see key resources table).

d Tutorial on HMM approach is available at GitHub (see key resources table).

d Other data and code are available upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patients
Six patients took part in the study; three patients performed the task (macro-micro; patient 1: female, 56 y; patient 2: female, 20 y;

patient 3: male, 25 y) and three patients only contributed electrodes for in vitro evaluation (Behnke-Fried; patient 1: female, 62 y;

patient 2: female, 27 y; patient 3: male, 28 y). The patients had medication-resistant epilepsy and undergone implantation of depth

electrodes for localization of epileptic foci. Prior to the stay in the EMU, participation in the study was discussed with patients and the

clinical team. The study protocol was described verbally and in a written format before patients provided verbal assent and written

informed consent. No adverse or unanticipated events occurred during or as a result of the study protocol. The patient study was

approved by the IRB committees at the Carilion Clinic (19-365) and Banner University Medical Center (STUDY00000295).

Controls
A cohort of seventeen adults (7 females, age range: 26-64 y) were recruited as controls (no reported history of psychiatric or neuro-

logical disorder) and performed the task in a standard laboratory setting. The control study was approved by the IRB committee at

Virginia Tech (10-893).

METHOD DETAILS

Experimental task
Subjects performed a visual affective oddball task. The task was divided into six blocks of 100 images; each image was shown for 1 s

and the images were separated by 1 s blank intervals. Within each block, 80% of the images were a checkerboard image (standard

stimulus), whereas the remaining 20% were unique IAPS images (oddball stimuli). The presentation order was randomized within a

block. The IAPS images were selected based on the image content ratings provided by the IAPS (Figure S2A) and grouped such that

every block contained images of the same category: there were four emotionally evocative blocks, which varied in terms of valence

(negative versus positive) and arousal (low versus high), and two emotionally neutral blocks. We included two neutral blocks to bal-

ance the design at the factor level (e.g., two neutral versus two high-arousal blocks). The order of the blocks was randomized within

each subject. To keep subjects focused on the task, theywere asked to press a buttonwhenever an oddball stimuluswas shown. The

task was presented on a computer monitor mounted on top of the Tobii Pro Spectrum eye-tracking system. Subjects made a

response by pressing any key on one of two button boxes, with a button box held in each hand.

Pupillometry
Data acquisition

The diameter of the pupil (pupil dilation) was monitored in the left and right eyes using the Tobii Pro Spectrum eye-tracking system

running at a sampling rate of 1200 Hz. The subject was placed in a seated position 55-75 cm from the eye tracker as indicated by the

Tobii Pro software. The system, which is fully external, was calibrated using a system-native 1 min protocol where the subject shifts

their gaze to different corners of the computer screen.

Data pre-processing

The eye tracking system was unable to measure pupil diameter for some fraction of the samples taken, resulting in missing pupil

diameter measurements. Sources of missing data include head movement, eyeblinks, and closing of the eyes. However, even

when the eye tracking system is able tomeasure pupil diameter, themeasurementsmay not always accurately reflect the actual pupil

size, such as when the eyelid partly obscures the pupil. As is standard practice in pupillometry, we applied several pre-processing

steps to reconstruct as much of the missing data as possible while correcting for as much of the invalid data as possible.

We adapted a velocity-based blink detection algorithm with cubic-spline reconstruction45 for use with our specific eye-tracking

system. In this algorithm, written in MATLAB, blinks are detected by the following sequence of features: (1) a high negative rate of

change in pupil diameter (blink onset velocity); (2) a contiguous run of missing (or zero-valued) pupil diameter measurements

(gap); (3) a high positive rate of change in pupil diameter (blink reversal velocity); and (4) a return to zero rate of change in pupil diam-

eter (blink offset velocity). However, in our data, a large fraction of blinks did not exhibit the characteristic velocity excursions used by

the original algorithm. To detect these blinks, we developed a second algorithm that detected gaps in pupil diameter measurements

using the same gap duration thresholds as the velocity-based algorithm.

To reconstruct pupil diameter measurements across blinks, we also adapted the reconstruction itself. There was often significant

noise in the pupil diameter measurements before and after blinks, likely induced by the eye-tracking system attempting to re-acquire

the pupil. This issue required additional finesse in the reconstruction, resulting in these steps: (1) define a 5 s analysis window

centered on the blink; (2) extract a smoothed (the "lowess" option to MATLAB’s "smooth" function, 0.125 s window) pupil diameter

vector from the analysis window; (3) calculate mean and standard deviation of the smoothed pupil diameter values outside of the

blink; (4) find four equidistant points in the smoothed vector within 1/2 of the blink duration before the blink onset; (5) find four equi-

distant points in the smoothed vector within 1/2 of the blink duration after the blink offset; (6) calculate the cubic-spline interpolation of

the eight points; (7) replace the (unsmoothed) blink with the interpolated values; (8) reject any reconstruction which would result in

velocity excursions exceeding the thresholds used for blink detection; and (9) reject any reconstructions which would result in pupil

diameters exceeding three standard deviations from the mean smoothed pupil diameter (from step 3).
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Since the various thresholding parameters for the blink detection and reconstruction in the original algorithm were reported in

terms of samples (at a sampling rate of 1 kHz) and arbitrary units of pupil size, we had to convert the values to milliseconds and mil-

limeters respectively before we could apply the algorithm to our eye-tracking data. We found that using fixed velocity thresholds did

not perform well, so we set our thresholds in terms of the standard deviation of pupil velocity after smoothing (see Table S1 for a

summary of parameters and conversion from original algorithm). After blink detection and reconstruction, we still noticed small

gaps in the pupil data. Any such gaps lasting 0.08 s or less were corrected by applying a simple shape-preserving cubic spline inter-

polation (the "pchip" option to MATLAB’s "fillmissing" function). Before any data analysis, we averaged the reconstructed pupil data

across the left and right eyes. If data was missing for one eye, then data from the other eye was used. Finally, the average pupil data

was downsampled to 10 Hz using linear interpolation.

Data exclusion and quality

We excluded trials from pupil-related analyses when more than 50% of the data were reconstructed or missing following pre-pro-

cessing (patient group: 24%; control group: 12%). For the included trials, 3% of the data were missing for a given time point in

the patient group and 1% in the control group. While the proportion of excluded trials and missing time points is higher in the patient

group, the presence of an oddball PDR in the patient group, and the correspondence between the oddball PDRs in the two groups,

provide strong evidence for the reliability of the pupil data recorded in the EMU.

General description of electrochemical approach
Our approach builds on electrochemistry as applied in animals over the last three decades46,47 and the recent adaptation of electro-

chemistry for use in the human brain.15–18 However, the current study presents an advance in human electrochemistry, which to date

has involved the insertion of research-exclusive carbon-fiber electrodes during awake DBS surgery, by showing that electrochem-

istry can be performed on depth electrodes that are already in standard clinical use. The data acquisition protocol in human electro-

chemistry is similar to fast-scan cyclic voltammetry (FSCV) as used in animals with regard to the time course of the voltage sweeps

and the recording of the induced current time series during those sweeps.48 The main change from animal work is the statistical

method used to estimate the concentration of analytes of interest from the measured current time series.

FSCV involves the delivery of a rapid change in electrical potential to an electrode and measurement of the induced electro-

chemical reactions as changes in current at the electrode – with the guiding idea being that the current response carries informa-

tion about both the identity and the concentration of analytes in the surrounding neural tissue. The goal of analysis of FSCV data is

therefore to develop a statistical model that uses the current response in the best possible way to separate and estimate analytes

of interest. The standard procedure is to train the statistical model on in vitro data collected in a laboratory setting where the pres-

ence and concentration of analytes of interest can be controlled and then apply this model to in vivo data for signal prediction.

Traditionally, the statistical model involves a decomposition of the in vitro training data into principal components that are then

used for in vivo analyte inference within a regression framework.49 In broad terms, this approach treats analyte inference as a

problem of signal reconstruction: the concentration of an analyte of interest is estimated by mapping an in vivo current response

onto those collected in vitro and then using the best match to label the in vivo current response. We instead treat analyte infer-

ence as a problem of signal prediction, with the statistical model optimized to generate accurate predictions about out-of-

training data. Previous human work16–18 has used elastic net regression,50 but recent years have seen the development of

more powerful machine learning methods. Here, we used deep convolutional neural networks as described below. Since infor-

mation is distributed throughout a current time series and not only at the oxidation or reduction peaks typically revealed by

principal components analysis,16–18 we use non-decomposed data such that every time point within a current time series con-

tributes to signal prediction. To facilitate out-of-training prediction, we train the model using large in vitro datasets and cross-

validation as described below.

Earlier work has taken steps to validate this electrochemical approach. First, the human-compatible carbon-fiber electrodes have

similar electrochemical properties to those used in the rodent brain.15 Second, the signal prediction approach returns more reliable

neuromodulator estimates than principal component regression.16 Third, it does not confuse changes in pH for changes in neuro-

modulator levels.16–18 Fourth, as shown here too (Figure S1), it can separate multiple neuromodulators from one another.16–19 Fifth,

it returns accurate neuromodulator estimates when tested in a laboratory setting where two neuromodulators change simultaneously

across time.18 However, since these validations have been performed in vitro, future work should explore in vivo validation in animals;

for example, one could evaluate signal predictions under optogenetically-controlled neuromodulator release38 and compare the time

course of these predictions to that measured using fiber photometry.39

Implementation of electrochemistry in current study
Data acquisition

We conducted FSCV on standard Ad-Tech macro-micro electrodes (MM16A-SP05X-000) and Benhke-Fried electrodes

(outer depth electrode: MM16A-SP05X-000; micro-wire bundle: WB09R-SP00X-0B6). The electrodes were stereotactically im-

planted into/explanted from the amygdala (macro-micro: left hemisphere in patient 1, right hemisphere in patients 2 and 3;

Behnke-Fried: all left hemisphere). For the macro-micro electrodes, we used a longitudinally adjacent pair of micro-contacts

on an electrode as our working and reference electrodes. For the Behnke-Fried electrodes, we used micro-wire #9 as our refer-

ence electrode and one of the other wires as our working electrode. Our FSCV protocol was a modification of previous work in

both rodents48,51 and humans.15–19 Our measurement waveform was a standard triangular voltage ramp applied at 10 Hz
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(macro-micro: hold at -0.6 V for 90 ms, ramp up from -0.6 V to +0.6 V at 240 V/s, ramp down from +0.6 V to -0.6 V at -240 V/s;

Benhke-Fried: hold at -0.6 V for 90 ms, ramp up from -0.6 V to +0.175 V at 155 V/s, ramp down from +0.175 V to -0.6 V at -155

V/s) and we recorded the current response at 100 KHz. For in vivo experiments, we collected data for 2 min before the task to

allow the electrode to equilibrate. We note that one of the macro-micro electrodes underwent changes in the current response

during in vitro data collection. To maintain in vitro current traces similar to the in vivo ones, the triangular voltage ramp was

decreased from ±240 V/s to ±160 V/s for all but the first in vitro dataset.

Signal prediction model

We generated in vivo signal predictions using an ensemble of deep convolutional neural networks that were trained and cross-vali-

dated on in vitro data with known concentrations of NA, DA, 5-HT and pH. The model architecture was based on the InceptionTime

time series classification model52 but modified for a regression framework. The model was implemented in Python,40 using

TensorFlow43 and Keras.44 Following previous applications,52 equally weighted averages of in vivo signal predictions from multiple

InceptionTime models were used to account for variability in the training process.

The (modified) InceptionTime model is based on two residual neural network (ResNet)53 blocks, each containing three convolu-

tional blocks. The input is added to the output of the first ResNet block, and, after activation, this serves as the input to the next

ResNet block. It is also added to the output of the second ResNet block, and the sum flows through activation functions, global

average pooling, and then finally to a dense layer with four output nodes, which after activation, gives the predictions of NA, DA,

5-HT, and pH. Each of the three convolutional layers in a ResNet block is further composed of convolutional blocks having four con-

volutional layers with 32 filters and increasing kernel sizes (1, 10, 20, and 40). The output of each of these convolutional layers is

stacked together, after which batch normalization and activation are applied. This output serves as the input for the next convolu-

tional block. All activation functions are RELU, except after the last dense layer, which uses softplus.

In vitro training data

We created specialized signal prediction models, by recovering the explanted electrode used for in vivo data collection and col-

lecting in vitro data on this electrode for model training and evaluation. We collected four datasets. For each of the three neuro-

modulators (NA, DA, and 5-HT), a dataset was collected with 30 concentrations noisily dispersed over the range from 0 to 2500

nanomoles (nM) and with a pH of around 7.4. In addition, each of these datasets contained 5 mixture solutions in which the con-

centration of the neuromodulator in question was 840 or 1680 nM and one or two of the other neuromodulators had a concen-

tration of 840 or 1680 nM. The fourth dataset was collected with 11 pH values in the range 7.0 to 7.8 and with the concentration

of the three neuromodulators set to zero as well as 5 mixture solutions as described above. In each dataset, data collection was

randomized across concentrations. For each concentration, the electrode was washed in PBS and then submerged in a PBS so-

lution as described above. We applied our triangular voltage ramp at 10 Hz and recorded the current response at 100 KHz for 65 s.

To reduce variation due to electrical noise and equilibration, we selected the most stable continuous 15 s section from the second

half of the 65 s time window.

In vitro model training

For each electrode, a 10-fold cross-validation test was performed and then a signal prediction model was created. A training run

involved a dataset being split into a training set containing around 90% of the data and a validation set containing the remainder.

The data was split by concentration, such that all data points of any given concentration were in the same set. Before training,

the training data were Z scored within analyte and then shifted by 10 standard deviations for each analyte to avoid zero gradients.

After training, the predictions were then subjected to the inverse of the normalization procedure. A model was then trained on the

training set using an ADAM optimizer,54 with an initial learning rate of 1e-3, mean squared error loss and a batch size of 64. After

each epoch, the loss on the validation set was calculated. If the performance on the validation set did not improve for five consecutive

epochs, then the learning rate was halved until it reached a minimum of 1e-5. After 100 epochs were run, the model from the epoch

with the lowest validation loss was selected as the final version. The training process was non-deterministic as variability is intro-

duced by stochastic gradient descent, the initialization of the initial weights, and the order in which data is fed to the algorithm during

training. When multiple training runs use the same data, different validation sets were used to reduce overfitting to any subset of

the data.

In vitro model evaluation

To evaluate the sensitivity and specificity of the signal prediction models, a 10-fold cross-validation test was performed (Figures 1C

and S1). The in vitro datawas split into 10 discrete folds. Each fold was held out as a test set and an ensemble of four equally weighted

sub-models was created via a training run on the remaining data. Ensembles of four models were used instead of five to reduce

computation time. The mean of the predictions from each ensemble was calculated for its corresponding test set. All test sets

were combined, resulting in all in vitro data points being predicted from ensembles that had never been trained or validated on

data points with true concentrations of those being predicted.

In vivo signal prediction

In vivo signal predictions were generated using an ensemble of five equally weighted models from five training runs. No test set was

held out to enable themodel to train on themost data possible. In vivo current traces were submitted to each of the fivemodels of the

ensemble and the mean of the model predictions was used as the signal prediction.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Standardization
We standardized the data so that our group-level analyses could be performed in a relative frame of reference – where "large" and

"small" values can be compared across patients. For example, for the analysis of the NA estimates shown in Figure 3A, we Z scored

the trial-level NA estimates at the patient level, before running the linear mixed-effects regression at the group level. This approach

minimizes, if not removes, the influence of unmodelled sources of patient-level variation in the baseline and/or the variance of

the data.

Mixed-effects regression
All linear mixed-effects regression models consisted of fixed effects and a random intercept for each patient; model comparisons

based on the Bayesian Information Criterion showed that the random-intercept models outperformed models which also included

random effects. We applied the models at the trial level as this approach accommodates the difference in the number of standard

and oddball trials. To illustrate our approach, we here consider the model for the estimated NA response around stimulus presen-

tation. The model is specified as follows using Wilkinson notation:

NA � 1 + ðarousal � valence + evocativeÞ � type+ ð1 j subjectÞ
In this model, stimulus type (standard = -1; oddball = 1) is specified at the trial level, and emotional valence (negative = -1; neutral =

0; positive = 1), emotional arousal (low = -1; neutral = 0; high = 1) and emotionally evocative (neutral = -1; evocative = 1) are specified

at the block level as per our task design (Figure 2A). In addition, valence and arousal are considered features of blocks involving

emotionally evocative IAPS images only (Figure S2A), with the evocative term capturing any difference between these blocks and

blocks involving emotionally neutral IAPS images. We highlight that, because of our block design, a standard stimulus is not simply

a non-IAPS image but a non-IAPS image of a particular category. This design feature is one of the reasons why it is possible to model

interactions between stimulus type and the emotional variables.

Hidden Markov model
HiddenMarkovmodels (HMMs), also known asMarkov switching processes, are popularmodels for unsupervised statistical learning

of multivariate time series data.24,25 HMMs are especially suitable for data exhibiting non-stationary features that can be character-

ized by an underlying and unobserved hidden process. The approach assumes that the hidden process is in one ofmany latent states

at any point in time, transitioning from one state to another over time, and that observations are generated from an emission distri-

bution, conditional on the latent state sequence.

We implemented a bivariate HMM using R41 and Stan.42 The bivariate HMM was based on a discrete latent state sequence that

partitions the pupil and NA estimates into different, potentially recurring regimes. Conditional on the latent state sequence, the two

estimates are assumed to be generated from an emission distribution, here a bivariate Gaussian distribution with state-specific

means and a state-specific variance-covariance matrix. The model allows a probabilistic estimate of the sequence of hidden states

and the estimation of the state-specific parameters of the emission distribution.

Let yt = ½NAðtÞ;PDðtÞ� be the bivariate vector of the NA and pupil (PD) estimates at time point t, and let zt ˛ f1;.;Kg be the state of
the hidden process at t, with K denoting the overall number of latent states. The generative mechanism of our proposed model is:

pðytjzt = jÞ = N
�
mj;Sj

�
Where:

mj = ½meanðNAÞ;meanðPDÞ�j
Sj =

�
varðNAÞ covðNA;PDÞ

covðPD;NAÞ varðPDÞ
�
:

We denote the state-specific transition probabilities as pj = ½pj1; .; pjK �, with pji = p ðzt = ij zt� 1 = jÞ, according to the

Markovian property that the probability of a change at time t depends only upon the latent state at the previous time point t � 1.

We adopted a Bayesian approach to inference. Within the Bayesian framework, the model parameters are regarded as random

variables and inference is carried out via their posterior distribution, which by Bayes’ rule is proportional to the likelihood of the

data times the prior distribution.55 In our model, the relevant parameters are mj, Sj and pj.

Our prior specification assumes a Dirichlet distribution on the transition probabilities pj and Student’s t distributions on the mean

parameters mj. We further decompose the covariance matrix Sj into a vector of scale parameters tj and a correlation matrix Uj, and

specify a half Student’s t prior on tj, which has been truncated to admit only positive values, and an LKJ distribution on the Cholesky

factor of Uj. Our prior specification is summarized as follows. For each state j = 1;.;J
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pj � Dirichlet ð1;1;1Þ;
mji � Student0s t ð4; 0;1:5Þ; i˛ fNA;PDg

tji � Student0s t+ð4; 1; 1:5Þ;
LUj

� LKJð1Þ
where pj is the vector of transition probabilities, and mj = ðmjNA;mjPDÞ and tj = ðtjNA; tjPDÞ represent the vectors of state specific

means and scales. The superscript + indicates that the distribution has been truncated to admit only positive values, and LKJ indi-

cates the LKJ prior,56 a family of probability distribution for positive definite correlation matrices (or equivalently for their Cholesky

factors).

The posterior distribution is not available in closed form; we therefore used the No-U-Turn Sampler (NUTS) which leverages

Hamiltonian dynamics to draw samples from the joint posterior distribution of the model parameters.

The number of latent states, K, for an HMM was selected by inspecting the posterior predictive fits and, in a more principled way,

by calculating the ratio of marginal likelihoods from different models. The latter is often called the Bayes factor,57 and can be thought

of as the weight of evidence in favor of a model against a competing one. Bridge sampling58 provides a general procedure for esti-

matingmarginal likelihoods in a reliable manner. This estimator can be implemented in R using the package bridgesampling,59 whose

compatibility with Stan makes it particularly straightforward to estimate the marginal likelihood directly from a Stan output.
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