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Information exchange between brain regions is key to understanding information processing for social decision- 

making, but most analyses ignore its dynamic nature. New insights on this dynamic might help us to uncover 

the neural correlates of social cognition in the healthy population and also to understand the malfunctioning 

neural computations underlying dysfunctional social behavior in patients with mental disorders. In this work, 

we used a multi-round bargaining game to detect switches between distinct bargaining strategies in a cohort 

of 76 healthy participants. These switches were uncovered by dynamic behavioral modeling using the hidden 

Markov model. Proposing a novel model of dynamic effective connectivity to estimate the information flow 

between key brain regions, we found a stronger interaction between the right temporoparietal junction (rTPJ) 

and the right dorsolateral prefrontal cortex (rDLPFC) for the strategic deception compared with the social heuristic 

strategies. The level of deception was associated with the information flow from the Brodmann area 10 to the 

rTPJ, and this association was modulated by the rTPJ-to-rDLPFC information flow. These findings suggest that 

dynamic bargaining strategy is supported by dynamic reconfiguration of the rDLPFC-and-rTPJ interaction during 

competitive social interactions. 
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. Introduction 

Competitive social interaction is a common situation in which people

ompete with one another for a finite resource or a common objective

wab and Johnson (2019) . When these interactions repeat many times,

articipants often dynamically switch between different strategies, such

s reputation-building and reward-collecting, usually with a long-term

oal of maximizing self-interests Camerer and Weigelt (1988) . These
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ynamic behaviors have been widely observed and are under exten-

ive investigation in behavioral economics research Camerer (2003) and

lso in mental health research for patients with developmental and per-

onality disorders King-Casas et al. (2008) . A question that naturally

rose in neuroscience is: how are these dynamic strategies supported

nd constrained by underlying biological substrates Montague (2008) .

rain regions, such as the right dorsolateral prefrontal cortex (rDLPFC)

or calculating one’s own strategy, and the right temporoparietal junc-

ion (rTPJ) for taking the other’s perspective, have long been implicated

n these interactions Glimcher and Fehr (2013) . It has been hypothesized
 2022 
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Fig. 1. Two-party bargaining game and dynamic behavior strategy. (A) Task design: the “buyer ” is given the private value 𝑣 of a hypothetical object. He or she is 

then asked to “suggest a price 𝑠 ” to the seller (values and prices are integers, 1–10). The seller then receives the suggestion price 𝑠 and is asked to offer a price 𝑝 . 

If the offered price is less than the private value of the object, the trade will be executed, and the seller receives a reward of 𝑝 while the buyer receives a reward 

of 𝑣 − 𝑝 , otherwise, the trade will not occur. Buyers and sellers do not receive feedback after each trial. (B) Dynamic bargaining strategy of a buyer (Subject ID 64) 

during the 60 rounds. True value 𝑣 (red) and suggested price 𝑠 (blue) were plotted. Scatter plots for the true value against the suggested price were reported for each 

behavioral window together with a least-squares line fitted to the data. (C) Positive slope for a bargaining strategy of incrementalist sharing the reward with the 

seller. (D) Negative slope for strategic deception trying to maximize the buyer’s own reward. (E) Near zero slope for conservative who does not communicate any 

information to the seller during the game. 
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hat these dynamic strategies for social interaction are supported by dy-

amic reconfiguration of the functional interactions among these brain

egions Yang et al. (2020) . However, owing to the technical limitations

f commonly used dynamic modeling approaches Calhoun et al. (2014) ,

here have been few studies on the dynamics of these functional interac-

ions and their behavioral association with strategic sophistication. New

nsights on this topic might help us to uncover the neural correlates of

ocial cognition in healthy population and also to understand the mal-

unctioning neural computations underlying dysfunctional social behav-

or in patients with mental disorders Brüne and Brüne-Cohrs (2006) . 

To probe the neural bases of the dynamics in social decision-making,

ere we used a self-paced, multi-round social interaction game ( Fig. 1 A)

hatt et al. (2010) . In each round of the game, a buyer is first informed

y the computer of the true value of a virtual item and then suggests a

rice to the seller to sell the item. The seller will sell for any positive

rice. The seller can infer the prior probability distribution of possible

alues but is not informed of the buyer’s trial-specific value. The seller

akes a price offer and if the offer is below the value, a sale takes place

but this information is hidden to the players, who do not get any feed-

ack). The final earnings from sales were reported at the end and paid

o subjects. 

Our focus was on the strategies that buyers used to suggest prices

ased on their private trial-specific values. In our sample, we observed
2 
hree types of bargaining strategies Bhatt et al. (2010) : 1) “conserva-

ives ” whose suggested prices revealed no information to their partners;

) “incrementalists ” who anchored their social signals (i.e. the suggested

rices) to the true values of the items (as evidenced by a high correlation

etween values and prices); and 3) “strategists ” who used a more sophis-

icated strategy by mimicking the incrementalists. That is, the strategists

enerated a series of prices with variability similar to the prices sug-

ested by incrementalists, in order to build a reputation in their part-

ers’ minds that their prices were revealing information about value.

owever, the strategists suggested low prices for the most highly val-

ed items (to earn a lot in those trials, i.e. reward-collecting) and high

rices for low-value items (which are not very profitable but necessary

or reputation-building). Their values and prices are therefore negatively

orrelated. Theoretically, the existence of these three strategy types has

lso been predicted by a Bayesian model of belief formation with each

ype possessing different depths of theory of mind, and no other strate-

ies has been predicted Bhatt et al. (2010) . 

In a previous analysis of this game, we considered the last 30 rounds

f the game to be revealing a single stable strategy Bhatt et al. (2010) .

ach subject was classified into one of the above three strategic groups

y the extent to which their suggested prices revealed the true value

f the bargaining item Bhatt et al. (2010) . Compared with the other

wo groups, we found greater activity of the left rostral prefrontal
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ortex [rPFC or Brodmann area 10 (BA10)] in the strategic group

hatt et al. (2010) , suggesting that long-term goal maintenance was

ecessary for the strategic deception. The stronger information flows

rom both dorsal anterior cingulate cortex and retrosplenial cortex to

he BA10 were associated with a higher level of deception during the

ame Luo et al. (2017) , which further highlighted the involvement of the

ognitive control systems for the strategic deception. Apart from BA10,

he rDLPFC has been associated with self-interested behavior, as its cor-

ical thickness has been shown to be negatively associated with prosocial

iving to strangers in the dictator game, but not in the ultimatum game

amagishi et al. (2016) . There is also evidence that rTPJ is essential for

ntegrating others’ beliefs into one’s own strategic choice, since its causal

nterruption by repetitive transcranial magnetic stimulation (rTMS) re-

uced the ability to model the other’s belief Hill et al. (2017) . However,

he functional role of the rDLPFC-and-rTPJ interaction remains unclear,

ainly owing to its dynamic nature during competitive social interac-

ions. In our sample, the rTPJ was dynamically engaged in the strategic

eception Bhatt et al. (2010) , i.e. the rTPJ became more activated when

he strategists switched from reputation-building to reward-collecting.

ot only was the engagement of rTPJ dynamic, but also the bargain-

ng strategy of the sellers was dynamically switched during the game

 Fig. 1 B–E). This dynamic switch of strategy might be supported by the

orresponding dynamic reconfiguration of the rDLPFC-and-rTPJ interac-

ion. Therefore, such a highly time-varying interaction requires a more

edicated model to reveal its dynamics. 

Unlike previous studies, which assumed that one participant could

ave only one strategy during the whole game, we relaxed this assump-

ion by investigating the dynamic switches between strategies from trial

o trial using a hidden Markov model (HMM). The hidden state at each

rial was defined as one of the three strategies introduced above, includ-

ng the conservative, incremental, and strategic strategies. The Markov

roperty was assumed: given the state of the current trial, the state of the

ext trial would be independent of the previous trials. The observation

t each trial was calculated from the association between the suggested

rices and the true values in seven adjacent trials that are centering at

he current one. When the adjacent trials shared the same hidden state,

hey naturally constituted a behavioral window of time when the sellers

dopted the same bargaining strategy. 

Next, we proposed a novel approach, namely time-varying Granger

ausality with signal-dependent noise (tvGCSDN), to estimate the dy-

amic effective connectivity between the key brain regions at each

ound (Supplementary Method S1). The proposed algorithm has the fol-

owing two main advantages: 1) Instead of setting a window length for

he sliding-window algorithms in most of the dynamic functional con-

ectivity analyses Preti et al. (2017) ; Simony et al. (2016) , tvGCSDN

akes an estimation at each trial by borrowing the strength of functional

agnetic resonance imaging (fMRI) data during the whole bargain-

ng game. 2) tvGCSDN is applicable to systems with signal-dependent

oise which violated the assumption of Gaussian white noise as-

umed by most of the previous dynamic effective connectivity mod-

ls Havlicek et al. (2010) ; Ryali et al. (2011) ; Sato et al. (2006) .

ignal-dependent noise is common in neural systems and has been

etected in both physiological recordings Harris and Wolpert (1998) ;

uo et al. (2011) ; Phan et al. (2019) and fMRI time-series signals

nika et al. (2020) ; Luo et al. (2013, 2017, 2020) . We proved math-

matically that the mis-specification of the time-invariant model to a

ynamic system underestimates the effective connectivity (Supplemen-

ary Method S1). We also demonstrated by simulations that the pro-

osed tvGCSDN could track the time-varying parameters of the dynamic

ystems both with and without signal-dependent noise (Supplementary

ethod S2, Figs. S1 and S2). The strength of the effective connectiv-

ty estimated by Granger causality has been proven to be equivalent

o a measurement of the information flow from the cause to the effect

arnett et al. (2009) . This equivalence enabled us to test the behav-

oral associations of the estimated information flows between the key
w

3 
rain regions in relation to strategic sophistication during the bargain-

ng game. 

. Results 

.1. Dynamic switches between strategies uncovered by HMM 

According to the hidden states (i.e. the bargaining strategies) de-

oded by the HMM ( Fig. 2 A; Supplementary Method S3), we found three

ypes of behavioral windows, including 80 incremental windows, 28

onservative windows, and 28 strategic windows. In total, 31.6% of par-

icipants (n = 24) switched their strategies during the game with a mean

SD] number of switches 1.5 [0.67] times ( Fig. 2 B). We detected 35 tran-

itions between strategies, including 8 incremental to strategic, 12 incre-

ental to conservative, 4 conservative to strategic, 10 conservative to

ncremental, and 1 strategic to incremental transitions. Compared with

ur previous time-invariant behavioral groupings using only the last 30

rials ( Bhatt et al., 2010 ; Fig. S3A-B), we re-classified 13.4% of trials

 𝑛 = 305 ) into a different behavioral category and discarded 15.7% of

rials ( 𝑛 = 357 ) as unstable. 

To characterize each behavioral window, we fitted a linear regres-

ion model using the true value to predict the suggested price. The slope

f this regression model, which reflected the way in which buyers re-

ealed the information about values of the items to sellers during the

ame, was used as a behavioral parameter for the pattern of informa-

ion revelation ( IR ). As expected, we found that the conservative win-

ows had the IRs close to zeros (Mean ± SD = 0 . 13 ± 0 . 11 ) with low

odel fits ( 𝑅 

2 = 0 . 13 ± 0 . 11 ), the incremental windows showed posi-

ive IRs ( 0 . 49 ± 0 . 19 ) with good fits ( 0 . 73 ± 0 . 15 ), and the strategic win-

ows exhibited negative IRs ( −0 . 59 ± 0 . 26 ) with good fits ( 0 . 46 ± 0 . 20 ;
ig. 2 C). The values of the virtual items, the starting time, and the

ength of the behavioral window were compared among three types

f behavioral windows, and no significant difference was found (Table

1). We also found that buyers with older ages had more incremental

indows compared with those with younger ages ( 𝑟 = 0 . 36 , 𝑝 = 0 . 0015 ),
hile females had more incremental windows compared with males

 𝑟 = −0 . 39 , 𝑝 = 0 . 0004 ; Table S2). 

In the estimated initial distribution of HMM, we found that the prob-

bility of using the incremental strategy was 58%, using the conservative

trategy was 37%, and using the strategic strategy was 5% ( Fig. 2 D). As

stimated by the transition matrix, the probabilities of the incremental-

o-conservative and the conservative-to-strategic transitions were 0.03

nd 0.05, respectively ( Fig. 2 A). As predicted by 59 repeated transitions

rom the initial distribution, the probability of adopting the strategic

trategy significantly increased to 26%, while the probabilities of the

ncremental and the conservative strategies decreased by 7 and 14 per-

entage points, respectively ( Fig. 2 D). Similar trends were observed by

he end of the game, as 30% of participants used the strategic decep-

ion while the percentages of participants using the conservative and

he incremental strategies decreased by 14 and 7 percentage points, re-

pectively. 

Evaluating the quality of clustering by the Davies–Bouldin Index

DBI; the smaller the DBI the better the clustering quality Davies and

ouldin, 1979 ), we found that the time-varying grouping in the cur-

ent study had a better clustering quality ( DBI 1 = 0 . 58 ) than a time-

nvariant grouping reported previously ( Bhatt et al., 2010 ; DBI 2 = 0 . 64 ;
he 95% confidence interval of DBI 2 − DBI 1 was [0 . 055 , 0 . 062] estab-

ished by 3000 bootstraps). This advantage remained to be significant

hen evaluated by the Calinski-Harabasz Index (CH; the bigger the CH

he better the clustering quality Cali ń ski and Harabasz, 1974 ). The CH of

he current clustering ( CH 1 ) is 264.9 and the previous clustering ( CH 2 )

s 173.2. The 95% confidence interval of CH 1 − CH 2 was [20 . 6 , 171 . 3] , es-

ablished by 3000 bootstraps. This might be important for the dynamic

ffective connectivity analysis, since a better definition of the behavioral

indow could better identify dynamic activity between brain regions. 
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Fig. 2. Behavioral window defined by the 

time-varying behavior during the bargain- 

ing game. (A) The decoding process of the 

hidden Markov model. The observations 

used in the method are the robust fit slope, 

Spearman correlation coefficient, and the 

corresponding p -value. (B) Behavioral win- 

dows identified for each subject. Blue for 

incremental window, green for a conserva- 

tive window, red for strategic window, and 

white for the unidentifiable trials. (C) The 

clustering result of behavioral windows in 

the two-dimensional feature space, where 

x -axis represents IR and y -axis represents 

𝑅 

2 . (D) The transition of the probability 

distribution of hidden states from the first 

round to 21 th round, 41 th round, and the 

end of the game. 
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.2. Strategic deception engaged additional brain circuits 

When the time-invariant grouping was used for the effective con-

ectivity analysis between those three key brain regions (i.e. the BA10,

DLPFC and rTPJ), no group difference in any information flow could

e identified by either the time-invariant GC model (Fig. S5A-F) or the

ime-invariant GCSDN model (Fig. S5G-L). 

In contrast, using the behavioral windows revealed by the HMM,

e found that the rDLPFC-and-rTPJ interaction was significantly dif-

erent among these three types of behavioral windows after the Bon-

erroni correction ( 0 . 0083 = 𝑝 < 0 . 05∕6 ). The strength of this interaction

as measured by the mean information flow ( IF ), which was averaged

mong the trials within the same behavioral window. This interaction

iffered in both directions, i.e. rTPJ-to-rDLPFC ( 𝐹 2 , 111 = 9 . 88 , 𝑝 = 0 . 0001 ;
ig. 3 D) and rDLPFC-to-rTPJ ( 𝐹 2 , 114 = 5 . 14 , 𝑝 = 0 . 0073 ; Fig. 3 C). The

ost-hoc analyses showed that the strategic deception engaged stronger

nformation flows in both directions when compared with the other two

argaining strategies. 

The regional variation in the hemodynamic response function (HRF)

ould be a potential confounding factor in the GC-based models. How-

ver, we compared the HRF delay parameters between each pair of these

hree key brain regions and found no significant difference (Fig. S10A-

; Supplementary Method S4). Therefore, the regional variation of HRF

s not a significant problem for the current analyses. We also systemat-

cally tested the performance of the proposed tvGCSDN at various con-

itions when the HRF delays combined with the neuronal transmission

elays between the estimated cause and effect brain regions. By numeri-
4 
al simulation assessing the performance of the model at different levels

f HRF delay and neuronal transmission delay (Supplementary Method

5), we found that when the HRF delay was slower in the cause region

ut faster in the effect region, no significant information flow was likely

o be detected, whereas reversed information flow was less likely to be

etected. For example, given no difference in the HRF delay, when as-

uming a neuronal transmission delay of 40ms or 80ms, the tvGCSDN

ave 76% or 26% non-significant causalities and no reversed causality

Fig. S11). These simulations demonstrated that the estimated dynamic

nformation flow by the tvGCSDN was a reliable measurement for the

ynamic strength of the corresponding effective connectivity. 

.3. Top-down control correlated with level of deception in strategic 

indows 

After the Bonferroni correction ( 0 . 0083 = 𝑝 < 0 . 05∕6 ), we found that

 stronger negative IR was associated with a stronger IF BA10 →rTPJ in the

trategic windows after controlling for age, sex, social economic sta-

us, and activities of these two brain regions ( 𝑟 = −0 . 6051 , 𝑝 = 0 . 0078 ;
ig. 3 E). Meanwhile, stronger IF BA10 →rTPJ was also associated with a

etter model fit ( 𝑟 = 0 . 6953 , 𝑝 = 0 . 0019 ; Fig. 3 F). However, these associ-

tions were not significant either in the incremental or the conservative

indows (Fig. S6-S7). Among all these behavioral windows, we found

hat the IF r TPJ →r DLPFC but not the IF r DLPFC →r TPJ served as a moderator

 𝐹 1 , 100 = 4 . 99 , 𝑝 = 0 . 0277 by a 2-way analysis of variance) of the associ-

tion between the IF BA10 →rTPJ and the IR. 
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Fig. 3. Different brain circuits underlying distinct behavior. (A) Suggested price (orange) against true value (blue) of the virtual item during the game and the 

identified behavioral window(red for strategic window, blue for incremental window) for subject 59. (B) the rTPJ-to-rDLPFC and rDLPFC-to-rTPJ dynamic information 

flow during 59 rounds of barging game for subject 59; Comparison of the mean information flow in six directions among three types of behavioral windows. (C) 

from rDLPFC to rTPJ, ∗ 𝑝 = 0 . 0382 , ∗ ∗ 𝑝 = 0 . 0028 . (D) from rTPJ to rDLPFC, ∗ ∗ ∗ 𝑝 = 0 . 0006 (Incr. and Strat.), ∗ ∗ ∗ 𝑝 = 0 . 0003 (Cons. and Strat.). (E) Behavioral associations 

between the information revelation ( IR ) and the mean BA10-to-rTPJ information flow in strategic window group. (F) Behavioral associations between the 𝑅 

2 and the 

mean BA10-to-rTPJ information flow in strategic window group. (G) Brain map of the significant information flows (blue) and the behavioral associated information 

flow (red). ∗ 𝑝 < 0 . 05 ; ∗ ∗ 𝑝 < 0 . 01 ; ∗ ∗ ∗ 𝑝 < 0 . 001 . 
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. Discussion 

Dynamics in social decision-making demonstrate that with cognitive

ontrol one can explore different social strategies during competitive

ocial interactions. It has been hypothesized previously that dynamic

ocial strategies are supported by the dynamic reconfiguration of neu-

al information flows in certain brain circuits. However, such functional

econfiguration remains difficult to investigate, partially owing to both

ts dynamic nature and noise in neural recordings. The current study

roposed a hidden Markov model to uncover the trial-to-trial transi-

ions between bargaining strategies and a time-varying GCSDN model to

eveal the functional reconfiguration of effective connectivity support-

ng these transitions. The current study is the first to demonstrate that

tronger information flows between rDLPFC and rTPJ is associated with

ngaging in strategic deception — more specifically, top-down control

rom BA10 to rTPJ. 

.1. Behavioral modeling of dynamics during multi-round social 

nteractions 

Notably, the dynamics revealed by the HMM suggest an interac-

ion between the theory of sequential equilibrium in repeated economic
5 
ames Camerer and Weigelt (1988) and the hypothesis of intuitive

rosociality Jamil and Jason (2013) . When considering the incremental

trategy as the most prosocial behavior and strategic deception as the

ost self-interested behavior, the conservative strategy falls somewhere

n between — not collaborating but also not cheating. The hypothesis

f intuitive prosociality is partially supported by the finding of 58%

f buyers started with a prosocial strategy, i.e. sharing their rewards

ith sellers. However, the individual variation in intuitive prosocial-

ty Speer et al. (2020) is also significant, as the other 42% of buyers

tarting with non-prosocial strategies. When bargaining repeats many

imes, some buyers can be persuaded that it is a competitive setting

nd begin to explore different strategies for bargaining to maximize

heir reward. As a result of this exploration process, many participants

dopted the strategic deception, which was a mixed strategy that in-

luded both reputation-building and reward-collecting. As predicted by

he theory of sequential equilibrium, rational buyers build their repu-

ation in the sellers’ minds by sharing rewards with the sellers early

n the game, but at a later stage of the game they suggest much lower

rices for highly valued items and progressively collect more rewards.

his prediction describes the strategic deception, as examined in the

resent study, very well. However, not all participants had chosen to

dopt strategic deception by the end of the game. Even if the game
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t  
ere to be repeated infinite number of times, the steady-state distribu-

ion of the HMM ( incremental ∶ 48% , conservative ∶ 23% , st rat egic ∶ 29%)
redicts that many buyers but not all of them will adopt strategic decep-

ion. Therefore, in the current task design, some buyers explored various

trategies during this game with a goal of maximizing reward through

epetitive competitions, while some buyers chose to play this game in a

ollaborative way of sharing reward. The estimated transition probabil-

ty matrix of the HMM characterizes this exploration process, suggesting

 gradual increase in computational complexity. In particular, the prob-

bilities of directly transitioning between the incremental strategy and

trategic deception are near zero, but the probability of indirectly tran-

itioning from the incremental strategy to strategic deception via the

onservative strategy is greater than zero ( Fig. 2 A). 

.2. Dynamic effective connectivity for brain functional reconfiguration 

Explicit modeling of the dynamics during social interactions en-

anced our findings of how the brain’s effective connectivity was modu-

ated. We identified within-subject dynamic switches between different

argaining strategies in more than 31% of participants. That is, partic-

pants seemed to be exploring different strategies in this competitive

ocial interaction. Even during the last 30 trials of this game, in which

he sellers were assumed in previous studies to be implementing a sta-

le strategy Bhatt et al. (2010) ; Luo et al. (2017) , we still found more

han 20% of trials needed to be reclassified to have a different strategy.

o support different strategies, the underlying information processing in

rain circuits needs to be functionally reconfigured. This would require

hat observed fMRI signals are generated from a time-varying model;

herefore, assuming a time-invariant model would be an oversimplifi-

ation. This over-simplification thereby limited the ability of the effec-

ive connectivity analyses in the previous studies to identify any group

ifference in the connectivity between distinct strategies. After decod-

ng the hidden state (i.e. the strategy) for each trial, the self-transition

ithin the same state naturally defined a behavioral window. At all the

rials within this window, the participant implemented the same strat-

gy. Compared with the neuroimaging data from the last 30 trials, the

ata within the behavioral window are more homogeneous and are more

ikely to be generated by the same configuration of the underlying brain

ircuit. For the relatively stable brain activations of both the BA10 and

he rDLPFC, our findings were the same as the previous time-invariant

nalysis that both regions had stronger activations for strategic decep-

ion compared with the other two types of strategies during the game

hatt et al. (2010) . However, for a highly dynamic brain region (i.e. the

TPJ) during this game, the homogeneity of the data creates one major

dvantage for the current analysis, which is to detect significant differ-

nces in the effective connectivity supporting distinct strategies, which

ould not be detected previously Bhatt et al. (2010) ; Luo et al. (2017) . 

Another advantage of the current approach is the use of a non-

arametric weighting scheme to borrow the strength of the whole time-

eries data to inform the local estimation at each trial. Given the dy-

amic nature of social interactions, it is methodologically difficult to

nvestigate neural mechanisms underlying information exchange ow-

ng to the limited number of scans for each event of interest King-

asas et al. (2005) . The sliding window has been a popular approach

o address this problem Lindquist et al. (2009) , but the resulting con-

ectivity of the sliding window analysis can depend unpredictably on

he window length Lindquist et al. (2014) . A model of functional con-

ectivity has been elegantly embedded into an HMM by treating pat-

erns of connectivity as hidden states Warnick et al. (2017) . However,

his model can not decouple an interaction between two brain regions

nto information flows going in two opposite directions, since functional

onnectivity in this model is a symmetric measure. In social decision-

aking, top-down (or expectation-driven) and bottom-up (or stimulus-

riven) information flows are likely to serve different functional roles

aldauf and Desimone (2014) ; Cook et al. (2012) ; Dijkstra et al. (2017) ;

u et al. (2015) . A previous study found that stronger top-down infor-
6 
ation flow from the dorsal attention network to the ventral attention

etwork was associated with better performance in an attention task,

hile a bottom-up information flow in the opposite direction was asso-

iated with worse performance Wen et al. (2012) . Under the assumption

hat information flows among brain regions evolve smoothly over time,

ere we used the whole time-series data to make a robust estimation

t each trial by employing a non-parametric weighting scheme Fan and

ao (2003) . As demonstrated both theoretically and numerically (Sup-

lementary Method S1), a time-invariant model could miss significant

nteractions when averaging between both positive and negative effects.

herefore, estimating the Granger-causality at each trial and then aver-

ging only among those trials with the same bargaining strategy is the

ey to revealing the dynamic effective connectivity. 

.3. Additional information flow may be necessary for strategic deception 

The differences in the effective connectivity identified above re-

ect what we know about the behavioral types identified in the two-

arty bargaining game. Strategic deception requires a forward-looking,

onger-term strategy of manipulating their reputation in the eyes of

heir partners in order to increase their aggregate rewards. The incre-

ental strategy focuses only on the information present in the current

ound, while the conservative strategy is the simplest strategy of all by

ending uninformative signals to sellers. Consistent with these strate-

ic differences, we found significantly stronger information flows be-

ween the rTPJ and the rDLPFC when engaging in strategic deception

ompared with the other two strategies. This information exchange is

articularly interesting in light of the proposed functions of these two

rain areas Stallen and Sanfey (2013) . Evidence from neuromodulation

uring the ultimatum game has shown that the rTPJ has been impli-

ated in the perspective-taking during bargaining in proposers, while

he rDLPFC is implicated in the self-interest inhibition in responders

peitel et al. (2019) . However, the interaction between these two ar-

as has not been well characterized, as the neuromodulation tool (e.g.

DCS or rTMS) is likely to affect both the targeting region and its in-

eraction with other areas. After controlling for regional activities, an

nhanced rTPJ-and-rDLPFC interaction was identified in our sample.

uring strategic deception, higher rDLPFC activation reflects the higher

emands of both working memory and cognitive control, since buyers

eed to keep track of their previous suggestions to infer their reputation

n sellers’ minds Bhatt et al. (2010) and also need to control the self-

sh impulsive drives MacDonald et al. (2000) ; Mansouri et al. (2009) ;

pitzer et al. (2007) . Our finding of an enhanced rTPJ-and-rDLPFC in-

ormation exchange for strategic deception could be interpreted as the

igher-level computation (e.g., orienting attention, allocating working

emory, comparing complex strategies, etc.) of social strategy in the

DLPFC is triggered and informed by the immediate attentional needs

n modeling another player’s mind at the rTPJ from trial to trial. In-

eed, evidence from neuromodulation has indicated that the rTPJ is

ausally involved in social decision-making where mentalizing is neces-

ary Hill et al. (2017) . 

The enhanced rTPJ-to-rDLPFC information flow facilitates a signif-

cant association between the BA10-to-rTPJ information flow and the

evel of deception. BA10 has been implicated in long-term goal main-

enance Burgess et al. (2007) and is highly activated during strategic

eception Bhatt et al. (2010) . Stronger BA10-to-rTPJ information flow,

s a top-down control, was associated with a higher level of deception

i.e. suggesting much lower prices for the high-value items). This asso-

iation might be interpreted as rTPJ activation for strategic deception

eing under close regulation by the long-term goal of obtaining more re-

ards. This interpretation may explain why the rTPJ activation was not

onsistently greater over all deception trials but was instead modulated

y the value of the bargaining item. 

Interestingly, the rTPJ is also a key node of the ventral attention net-

ork (VAN) Schuwerk et al. (2017) , while the rDLPFC is a key node of

he dorsal attention network (DAN) Corbetta and Shulman (2002) . It has
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ong been hypothesized that top-down control from the DAN to the VAN

s necessary to filter out unimportant distractions Corbetta et al. (2008) .

n a visual attention task, stronger DAN-to-VAN control is associated

ith better performance Wen et al. (2012) . Therefore, our finding of

trengthened rDLPFC-to-rTPJ information flow for strategic deception

uggests that apart from mentalizing, attention is also a key cognitive

rocess to achieve better performance in competitive social interactions.

.4. Implications for dysfunctional social behavior 

The current study might contribute to the study of dysfunctional so-

ial behavior. The identification of neural mechanisms underlying dis-

urbed social functioning has been an important research topic for devel-

pmental and personality disorders with dysfunctional social behavior

azarus et al. (2014) ; Mier et al. (2013) ; Ruocco et al. (2010) . For ex-

mple, tasks from behavioral economics research involving trust and

ooperation were used to gain further insight into the interpersonal

unctioning of individuals with borderline personality disorder King-

asas et al. (2008) ; Unoka et al. (2009) . In the current study, the two-

arty bargaining paradigm also designed a social signal (i.e., the sug-

ested prices) to probe social functioning during an fMRI experiment.

ifferent from the previous tasks, the current design with a no feedback

ulti-round bargaining allowed the participants to explore various bar-

aining strategies, and thereby provided a new opportunity to investi-

ate the dynamics during social interaction and the underlying neural

orrelates. The use of dynamic behavior modeling in the task might help

s better understand the neural mechanism underpinning the patients’

ifficulties in initiating and maintaining social interactions. 

.5. Limitations 

Granger causal modeling (GCM) of fMRI data has been widely used

s a statistical tool to decouple the interaction between two brain re-

ions into information flow in two directions Friston et al. (2013) ;

eth et al. (2015) . Interpreting the resulting effective connectivity from

he model has certain limitations, such as the regional variation of the

emodynamic response function (HRF) and the low sampling rate of the

OLD signal Smith et al. (2011) . When the regional variation of the HRF

s within a certain range (e.g., the hemodynamic delay is comparable

ith the neural delay between the cause and effect brain regions), GCM

an still give a reliable inference of the effective connectivity, which

as been discussed at length both theoretically Seth. et al. (2013) and

mpirically Schippers et al. (2011) . The strength of information flow be-

ween brain regions estimated by the GCM has been associated with task

erformance Wen et al. (2012) . In our case, we deconvolved the HRF

rom the BOLD signal before the effective connectivity analysis and also

onfirmed that the hemodynamic delay was comparable among these

hree brain regions of interest. While statistical tools for effective con-

ectivity are important for neuroscience Park and Friston (2013) , given

he complex nature of the brain, the current approaches are still in their

nfancy, and the resulting conclusions should be taken as suggestive.

owever, increasingly sophisticated methods for causal inference using

MRI data, such as the method proposed in the current paper, promises

o significantly increase our understanding of the neural computation

nderlying social decision-making. Also, social cognition is not only dy-

amic but also context-dependent. With or without immediate feedback

n these interactions may have different neural correlates. Future studies

re needed to investigate the neural correlates for bargains with imme-

iate feedback. 

. Methods 

.1. Participants 

Secondary data analyses were performed using a sample of 76

ealthy subjects who participated in the accordance with a protocol ap-
7 
roved by the Baylor College of Medicine Institutional Review Board.

wo subjects were excluded in our current study because one of them

ressed the button too fast on many trials to contain only one scan in

ach of those trials, and the other subject was excessively slow in mak-

ng decisions in the task, with one trial lasting for more than 7 min

uring the bargaining game. Therefore, 74 subjects were included in

ur following analysis, including 36 females and 38 males. 

.2. Two-party bargaining game 

In this game, two players, a buyer and a seller played 60 rounds of a

argaining task. The duration of each round was self-paced depending

n how long it took the participants to respond. The inter-trial interval

as randomized according to a uniform distribution from 4 to 6 s. At

ach round, the buyer received a randomly generated private value 𝑣

f a virtual item and then suggested a price 𝑠 to buy this item from the

eller. Without knowing the true value of the item, the seller submit-

ed a price 𝑝 to sell this item according to the suggested price by the

uyer. If the submitted price was less than the true value of the item,

he true value of the item was shared by both parties, i.e., the buyer

ollected a reward as the true value minus the submitted price 𝑣 − 𝑝 ,

hile the seller got a reward as the submitted price 𝑝 ; otherwise, no

ne got any reward. The buyers could adopt different strategies during

his game, including anchoring their suggested price to the true value,

r suggesting a constant price without revealing any information of the

rue value, or mimicking the first strategy but suggesting high prices for

ow-valued items and low prices for high-value items ( Fig. 1 A). During

he 60 rounds of bargaining, no feedback was given to either the buyer

r the seller. Subjects would receive their aggregate earnings over 60 tri-

ls at a predetermined exchange rate at the end of the experiment. Both

ubjects were in fMRI scanners during the entire session. The current

tudy focused only on the “buyers ”. 

.3. Dynamic behavior modeling using the hidden Markov model 

In the previous study Bhatt et al. (2010) , after the behavior stabilized

n the game (assumed to be in the second half of all 60 rounds), the

uyer’s suggested prices ( 𝑠 ) were regressed against the true values ( 𝑣 )

y a linear model for the information revelation: 

 ∼ 𝛽0 + 𝛽1 𝑣. (1)

Previously, we used two behavioral parameters to identify the differ-

nt behavioral groups in the buyers, - the slope 𝛽1 , denoted as the param-

ter for the information revelation ( IR ), and the variance-explained 𝑅 

2 

hatt et al. (2010) . However, the assumption that each subject had only

ne strategy in this game might be an oversimplification. Taking Sub-

ect 64 for example, a positive slope 𝛽1 was found in the first 20 trials,

howing an incremental strategy ( Fig. 1 B and C). However, between the

0th and the 40th trials, behavior was characterized as strategic with a

egative slope ( Fig. 1 B and D). In the last 20 trials, the slope became

early zero, which was considered conservative ( Fig. 1 B and E). 

Here, we used the hidden Markov model to uncover the within-

ubject dynamics in the bargaining strategy. We assumed that the tran-

itions among three strategies satisfied the Markov assumption and the

bserved bargaining behavior was generated by the hidden state. Mathe-

atically, three bargaining strategies (i.e. the incremental, conservative,

nd strategic strategies) were modeled as the hidden states 𝑸 = 

{
𝑞 𝑖 
}3 
𝑖 =1 ,

ith the transition probability matrix as 𝐴 = 

(
𝑎 𝑖𝑗 

)
, 𝑖, 𝑗 ∈ 𝑄 , where 𝑎 𝑖𝑗 

tands for the probability of transition from state 𝑞 𝑖 to state 𝑞 𝑗 . The

bservational data are denoted as 𝑶 2∶ 𝑇 ,𝑠 = 

(
𝒐 2 ,𝑠 , … , 𝒐 𝑇 ,𝑠 

)
( 𝑠 = 1 , … , 76

nd 𝑇 = 60 ), where 𝒐 𝑡,𝑠 = ( 𝑟 𝑡,𝑠 , 𝑝 𝑡,𝑠 , 𝛽
( 𝑡,𝑠 ) 
1 ) is the observation vector at the

 th round of the 𝑠 th subject. According to the assumption that the sys-

em changed very slowly, we chose an interval of 7 rounds, which

ncluded the current round, 3 past and 3 future rounds, to calculate

bservations. 𝑟 𝑡,𝑠 is the Spearman correlation coefficient between the
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rue value and the suggested price calculated among the adjacent tri-

ls ( 𝑡 − 3 , 𝑡 − 2 , … , 𝑡 + 3) , 𝑝 𝑡,𝑠 is its corresponding 𝑝 -value, and 𝛽
( 𝑡,𝑠 ) 
1 is the

lope in Eq. (1) estimated using a robust regression algorithm in Mat-

ab (i.e., [robustfit]). Further assuming that the observation follows a

aussian distribution with the state-dependent parameters, we have the

ollowing model parameters: 

𝝀 = 

{ 

𝐴, 𝝅, 
{
𝚺𝑖 

}3 
𝑖 =1 , 

{
𝝁𝒊 

}3 
𝑖 =1 

} 

, 

here 𝝅 is the initial probability distribution of these three hidden

tates, 𝝁𝑖 and 𝚺𝑖 are the mean and variance of the Gaussian distribution.

he Viterbi algorithm ( Forney., 1973 ) was employed to decode the most

ikely sequence of hidden states from the observation sequence for each

ubject. More details about this algorithm are provided in Supplemen-

ary Method S3. When a hidden state remained for a few rounds before

t transited to another state, a behavioral window for this hidden state

as naturally defined. As a quality control for detecting a stable strat-

gy, the behavioral window consisted of no less than 8 adjacent rounds,

therwise, the strategy was considered to be unstable. Our findings re-

ained the same if using different intervals (i.e., the interval containing

 or 9 adjacent trials, or the interval only containing the past 7 adjacent

rials; Fig. S8) to calculate observations or choosing different thresholds

f the minimum length of behavioral windows (varying from 7 to 11

djacent rounds; Fig. S9). 

.4. Image acquisition and preprocessing 

The fMRI data were collected using a 3-Tesla Siemens scanner.

hole-brain echo-planar images were acquired with a repetition time

TR) of 2000 ms (echo time, TE, 25 ms). Thirty-seven 4-mm slices

ere acquired 300 off the anteroposterior commissural line, yielding

 . 4 × 3 . 4 × 4 . 0 mm 

3 voxels. The fMRI data were preprocessed previously

hatt et al. (2010) using the SPM ( http://www.fil.ion.ucl.ac.uk/spm )

ith a standard procedure, including the slice-timing correction, motion

orrection, co-registration, normalization to the Montreal Neurological

nstitute template, and high-pass filtered (128 s). 

.5. fMRI time-series 

Time series data were extracted and averaged over voxels in the three

egions of interest (ROI) described by Bhatt et al. (2010) : the left rostral

refrontal cortex [BA10, peak voxel at ( − 32, 48, 20)], the right dorso-

ateral prefrontal cortex [rDLPFC, peak voxel at (36, 28, 36)] and right

emperoparietal junction [rTPJ, peak voxel at (52, − 48, 20)]. 

To carry out the analysis of the effective connectivity, we controlled

or the event-induced dynamic, since this dynamic might constitute a

ommon driver of brain activity in all these brain regions. Here, we first

stimated the HRF of each brain region for every subject by means of

he generalized linear model (Supplementary Method S4; Friston et al.,

995 ). Second, we convolved the estimated HRF with the event train

e.g. trial onset, thinking, choice-making) and down-sampled it to the

ame sampling rate as the BOLD signals before regressing out this event

ignal from all brain regions. Third, the residual BOLD signals were

etrended and corrected for head motion by using 6 parameters for

oth translation and rotation. Considering the effects of sudden head

ovement, the trials with frame-wise head movement (i.e., the differ-

nce between adjacent volumes), which had been transformed to z -

core, greater than 1 were zero-weighted by the tvGCSDN for the ef-

ective connectivity analysis. Focusing on the BOLD signal for choice-

aking, we only used scans between the onset trial and the price sub-

ission of the suggested price. For the Granger causality, the procedure

f zero mean was conducted separately for each trial Luo et al. (2017) ;

en et al. (2012) . 
8 
.6. Dynamic information flow between brain regions during the bargaining

ame 

To deal with both time-varying information flow and signal-

ependent noise in the BOLD signal, we proposed a novel algorithm,

.e. the tvGCSDN. Briefly, the information flow between each pair of

he three ROIs was estimated locally at each round ( IF ROI 1 →ROI 2 ( 𝑡 ) , 𝑡 =
 , … , 60 ) by making use of the data from all the other rounds as the

ndirect observations. The log likelihood function was calculated as a

eighted summation among all rounds. The weight of each round was

iven in a kernel form and determined by both the distance from the

urrent round and the motion parameter. We provide more details of

his algorithm in the supplementary material methods S1. We also in-

estigated the information flow between brain regions by GC method

nd GCSDN method as a comparison. 

As Granger causality works only when the regional variation of the

emodynamic response function (HRF) of the BOLD signal satisfies cer-

ain conditions Seth. et al. (2013) , we tested whether the regional vari-

tion of the HRF was significant among the three ROIs in the current

tudy. Considering that the sensitivity of the analyses for effective con-

ectivity depends on the neuronal delay between the source and the

arget regions and their relative HRF delay Schippers et al. (2011) , un-

er different levels of neuronal delays, we systematically performed a

eries of simulations to evaluate the model performance. 

.6.1. Statistical analysis 

At each behavioral window defined above by the HMM model, we

stimated both the behavioral parameter of the information revelation

 IR ) in model (1) and the mean information flow between each pair

f the ROIs ( IF ROI 1 →ROI 2 that was averaged among all rounds within

his window). Possible confounding factors were also taken into con-

ideration, including the activation of the ROIs (the median of the per-

entage of signal change in BOLD compared with round onset), age,

ex, and socioeconomic status. Only 29 subjects had IQ measurements

vailable, so we did not use this covariate. The mean information flow

F ROI 1 →ROI 2 was compared among three types of behavioral window by

ne-way analysis of variance. Before the group comparison, we first re-

ressed out the above confounding factors from the mean information

ow, and then excluded the outliers identified as outside the range of

 2.7 standard deviations away from the mean in each direction for each

ype of behavioral window. In each direction, the averaged number of

indows excluded from each behavioral type was 1.6. For the behav-

oral association, we calculated the partial correlation between IF and

R while controlling for the above covariates. The Bonferroni correction

as used to control for the multiple comparisons among all 6 directions,

.e. 𝑝 < 0 . 05∕6 . 

ata and code availability statement 

The datasets and code generated and analysed during the

urrent study are available at https://github.com/rhyang2021/

ata-code4TVGCSDN . A Matlab toolbox of this algorithm is also
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Dynamic neural reconfiguration for distinct strategies during com-

etitive social interactions (Mendeley Data). 
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