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11.1 INTRODUCTION

What are the key questions for a computational psychiatry? What level
of description provides the best route forward in computationalizing
mental experience and its derangement by disease, injury, and develop-
mental insult? Why will computational psychiatry provide something
new not yet exploited by description-by-symptom clusters or even what
many would call biological psychiatry? Do we hope or even imagine that
a useful computational psychiatry will supplant these other approaches?
In reverse order, “no,” “I am not sure,” “Who knows?,” and “Too many to
list.” The translation of computational neuroscience to issues regarding
ongoing mental function and dysfunction is a natural step at time when
models can be built to address nervous system function at scales ranging
from the synaptic to collections of interacting humans (Fig. 11.1).

Some meaning can get lost here if one is not careful. It’s the compu-
tational process perspective that is new, not the mathematical modeling
and its rendering in modern computers (Montague et al., 2004, 2012). The
difference between what I will call mathematical phenomenology and
computational modeling is sometimes subtle but always important to
highlight. There is a difference between modeling an ion channel, neural
membrane, neuron, or network of neurons using biophysical/biochem-
ical parts and asking how the whole performs and proposing a compu-
tational process as being implemented in the dynamic interactions taking
place in a piece of neural tissue. A hypothetical computational process,
like the reward-dependent error signaling I will highlight below, provides
a guide (here rendered as a differential equation) to organize the

Growing body of cellular & 
molecular data

Behavior, thoughts,
moods, etc.

Computational
Models and methods

complex behaviors, thoughts, moods, etc as

computations.

computations.

neuronal interactions as 

FIGURE 11.1 The current ambition of computational neuroscience. Computational
process models “will” connect neurobiology to cognitive variables. It’s an approach easy
to state but hard to carry out.
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underlying biophysical/biochemical dynamics rather than modeling
them in the traditional sense. In many ways, a computational process
approach is a more speculative approach to neural problems, but it’s my
and other investigator’s instincts that this approach has a lot to contribute
to the neurobiology of mental illness. How far it will go remains to be
seen, it’s currently in its infancy (Dayan et al., 2015; Maia and Frank, 2011;
Montague et al., 2004, 2012).

11.2 REINFORCEMENT LEARNING SYSTEMS AND THE
VALUATION OF STATES AND ACTIONS

In words of one investigator, “Reinforcement learning (RL) has become
a dominant computational paradigm for modeling psychological and
neural aspects of affectively charged decision-making tasks.” (Dayan,
2012). To the uninitiated, the term reinforcement learning sounds pro-
foundly behaviorist (think stimulus-response learning; Pavlov, 1927;
Konorski, 1948; Hebb, 1949), but the modern use of reinforcement
learning models shows them to be much moredincluding rich notions of
internal reward, boundaries of an agent that interacts with the world, and
how reinforcement system organize to integrate with cognitive control
(reviewed in Dayan, 2012; but see Botvinick et al., 1999, 2001, 2009; Frank
et al., 2001 for some of the seminal accounts surrounding issues of
cognitive control not considered in detail here). Modern reinforcement
learning models derive from parallel efforts in the mid-twentieth century:
one from psychology and conditioning literature (Bush and Mosteller,
1951a,b, 1953, 1955) and the other from the world of optimizing control
(Bellman, 1957).

The modern rendering of reinforcement learning as applied to neural
systems began with the work of Robert Bush and Frederick Mosteller in
the early 1950s. Their approach to animal learning was modern by
emphasizing prediction learning, the animal as a multidimensional
learning machine driven by statistical regularities in its world, and the
history-independent assumption (theMarkovian assumption) common to
decision-making models today (Bush and Mosteller, 1953; also see
Rescorla and Wagner, 1972; Dayan and Daw, 2008). Several sets of dis-
coveries in the 1980s set the stage for the modern importance of rein-
forcement learning as a computational paradigm for understanding the
neurocomputational basis of value-dependent choice. The first set of
discoveries related to the clear rendering of how nervous tissue could
carry out perceptual inference. This work involved the pioneering paper
by John Hopfield (1982) on neural networks, augmented by the work of
Hinton and Sejnowski (1983) showing how Hopfield networks could
carry out inference, and followed by the paper by Hopfield and Tank in
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1986 mapping many of the existing and emerging ideas in computation by
neural networks onto potential components in real neural tissue. Collec-
tively, this kind of work gave license to the idea that computational models
could provide a newway to understand the extremely complex underlying
neurobiology. Instead of simply working one’s way out of the neurobio-
logical detail toward more integrative function, one might make progress
by seeing the system as being an evolved computational device where the
details of the computation were the important feature on which to focus.

Many other investigators contributed to this climate of computation, but
it was thework of Sutton and Barto that brought value-dependent decision-
making to biologydalmost unknowinglydwith their work on a powerful
approach to incremental learning called themethod of temporal differences
(Sutton and Barto, 1981, 1987, 1998). This work appealed to a deceptively
simply learning algorithm that adjusted its learning in proportion to dif-
ferences in successive predictions, rather than the BusheMosteller rule that
learns based on a trial-based difference between a prediction and an
outcome. The SuttoneBarto approach, such as similar methods developed
in the area of optimizing control (Bellman, 1957), also explicitly posited a
“goal of learning” and in doing so defined how an agent “should” value its
states (Fig. 11.2). The value of a state at time t should be

VðStÞ ¼ E
�
rt þ grtþ1 þ g2rtþ2 þ/

�
for 0 < g � 1 (11.1)

E is expected value operation taken for each “tic” forward from present
time t and the r’s represent the distribution of rewards at each time into
the distant future. g is a discount factor that builds in the notion that
nearby times are more valuable than more distal times (and it helps
immensely with convergence proofs! see Kushner and Clark, 1978; Dayan
and Sejnowski, 1994). The first big take-home point is that the value of a
state depends on its future. The second big take-home point is that once

FIGURE 11.2 The goal of learning in reinforcement learning systems: the future is

(almost) everything. One virtue to reinforcement learning systems (however complex) is
that they commit to a goal of learning. In the simplest settings the goal of learning is to adjust
parameters to estimate the value V of states where this value is defined by the future of that
state: the average discounted reward expected from that state into the distal future. This
assumption about the value of the state contains within it the “natural” definition of and er-
ror signal used to update the estimate. This latter quantity is a form of the Bellman equation
and is recursivedconnecting variables at time t to variables at time t þ 1 (Bellman, 1957).
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one commits to this model for the value of a state, then there is a natural
error signal latent in the definition. Take Eq. (11.1) and write it for Stþ1

VðStþ1Þ ¼ E
�
rtþ1 þ grtþ2 þ g2rtþ3 þ/

�
(11.2)

which means that

VðStÞ ¼ Efrtg þ gVðStþ1Þ (11.3)

If a creature had such a future-looking valuation available to it, then it
could use relationship Eq. (11.3) to define a natural error term for whether
its evaluations at time t were consistent with those at time t þ 1.

0 ¼ Efrtg þ gVðStþ1Þ � VðStÞ (11.4)

This is called the temporal difference error in the parlance of Sutton
and Barto (1981, 1987) and Sutton (1988). The crucial difference with
BusheMosteller was the successive prediction part. This is the second big
discovery during the 1980s, a simple algorithm for valuing the world and
learning how to value the world through prediction learning. The
Bayesian rendering of these basic ideas retains their essentials but equips
an agent with probability distributions over the states of the world and
actions available from each state. One normative prescription in that
context requires that the agent “should choose” the action that maximizes
the average reward.

The thirdbig realization emerged in the early 1990swith theproposal that
diffuse ascending systems in the nervous systemsdlarge systems of axons
that deliver neuromodulators like dopamine, serotonin, norepinephrine,
and so ondwere implementing a form of temporal difference learning and
that thiswasageneralway that biological systemscould learn tovalue states
(Montague et al., 1993, 1995, 1996; Montague and Sejnowski, 1994; Schultz
et al., 1997; also see Dayan et al., 2000; also see Montague et al., 2004 for
early discussions). For this to be true, the dominant learning model, the
idea of the Hebbian synapse (Konorski, 1948; Hebb, 1949), had to be
modified. In 1993, Montague et al. proposed such a modification to tradi-
tional Hebbian learning: “We postulate a modification to Hebbian accounts
of self-organization: Hebbian learning is conditional on an incorrect pre-
diction of future delivered reinforcement from a diffuse neuromodulatory
system.” This modification allows the bidirectional synaptic change to
store predictions rather than correlations. This group claimed that this
same theoretical setting accounted for physiological recordings from
dopamine neurons by Schultz et al.: “Recent data (Ljunberg et al., 1992)
suggest that this latter influence is qualitatively similar to that predicted by
Sutton and Barto’s (1981, 1987) classical conditioning theory.” (Montague
et al., 1993). The detailed claim was finally published in 1996 (Montague
et al., 1996), and the same theoretical proposal was applied successfully to
account for important elements of bee learning also controlled by a
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diffusely projecting biogenic amine system (Fig. 11.3; Montague et al., 1994,
1995. See Hammer, 1993). The theoretical framework was subsequently
summarized in a review paper with the theoreticians (Montague and
Dayan) breaking bread with the physiologist Schultz et al. (1997). This
work connects a computational theory for how agents should value the
world, generate errors, and update parameters based on this theory, and it
links it directly to a neuromodulatory system (dopamine) involved in a
number of psychiatric diseases. This connection forms a crucial piece in the
theoretical approach to social exchange used below to probe psychopa-
thology, and it’s one starting point for translating this level of computa-
tional neuroscience model to human disease (Montague et al., 2004).

To summarize, the birth of applications of reinforcement learning
models to dopamine systems had several crucial parts that converged
in the early 1990s and up through the early 2000s that gave confidence
that the models could be used to design and interpret experiments and
that they should be stretched until they broke (with luck in fruitful ways).
The remainder of this chapter will focus on how those models have

FIGURE 11.3 Temporal difference learning accounts for bee learning and its relation

to octopaminergic neuron(s) in bees. (A, B) Simulated ‘bee’ agent takes in visual input in the
form of blue and yellow squares (flowers) each color associated a specific set of statistics of
nectar return from each color. (C) Activity in a neuron, VUMmx1, containing octopamine is
necessaryandsufficient forodorant conditioning inhoneybees (Hammer, 1993). A temporal dif-
ferencemodel of this arrangement connects this basic physiology to the statistics of flower sam-
pling by bees (Montague et al., 1995; see Real, 1991 for artificial flower experiments). The same
basic model also accounts for detailed electrophysiological recordings in primate dopamine
neurons during conditioning experiments (Montague et al., 1996). (D) Subjective value func-
tion for predictor neuron P in panel C. A ‘normal’ saturating response to increasing nectar vol-
ume could be tuned to convey fitness value (given the bee’s current state) of a volume of nectar.
Adapted from Montague, P.R., Dayan, P., Person, C., Sejnowski, T.J., 1995. Bee foraging in uncertain

environments using predictive hebbian learning. Nature 377, 725e728.
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inspired the use of economic games in humans to structure brain and
behavioral responses in a way that gives computational insight into a
number of traditional psychopathologies including major depression,
autism spectrum disorder, borderline personality disorder, addiction, and
attention-deficit hyperactivity disorder. I will focus primarily on the use
of a (now) well-studied reciprocation game called the multiround trust
game.

11.3 REACHING TOWARD HUMANS

The temporal difference framework was tested in humans using BOLD
imaging and simple conditioning paradigms analogous to those used in
nonhuman primates (e.g., Schultz et al., 1993). Fig. 11.4 shows strong
activation in the ventral striatum when contrasting (nonequilibrated) pre-
dictable and unpredictable sequences of juice and water squirts during
BOLD neuroimaging (Berns et al., 2001; Pagnoni et al., 2002; Montague and
Berns, 2002). Fig. 11.5 shows a rather direct test of the model in human
subjects during simple conditioning alongside a summary pictorial by
Braver and Brown (2003) (McClure et al., 2003; O’Doherty et al., 2003). This
is strong evidence but it asks for the model to extenddan area of active
pursuit today. Altogether the early results in humans were found to be
strongly consistent with a temporal difference-like signal in the striatum
(see Glimcher, 2011 for review) (Figs. 11.4 and 11.5). Later work by
Glimcher et al. using humans and nonhuman primates put the model and
evidence on much firmer footing (Bayer and Glimcher, 2005; Rutledge

FIGURE 11.4 Early predictability experiment in humans using BOLD imaging.

Comparing activity correlated with predictable sequences of juice (red) and water (black)
shows strong responses in ventral striatum (Berns et al., 2001).
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et al., 2010), but the consistent summary is that it is now a widely tested
framework for one important computational process encoded by modu-
lations in dopaminergic activity.

The framework has implications even for the complex act of interacting
with other humans. In a series of BOLD imaging experiments using
interactive economic games as a cognitive probe (Figs. 11.6 and 11.7),

FIGURE 11.5 Temporal prediction errors test predictions of temporal difference

model of dopaminergic function during BOLD imaging in humans. (A) Passive condition-
ing paradigm in humans overtrains on a specific time and (fixed) amount of juice delivery
(6 s). Catch events allow experimenters to test three elements of the temporal difference
model: (1) responses to the predictive cue (yellow light), (2) responses at the expected
time of juice delivery but during those moments when it is not delivered, and (3) responses
at the (unexpected) new time of juice delivery. (B) Pictorial summary of the tests of the tem-
poral difference predictions for this experiment in humans. (B) Adapted from McClure, S.M.,

Daw, N.D., Montague, P.R., 2003. A computational substrate for incentive salience. Trends Neuro-

sci. 26 (8), 423e428; O’Doherty, J.P., Dayan, P., Friston, K., Critchley, H., Dolan, R.J., 2003. Tem-
poral difference models and reward-related learning in the human brain. Neuron 38, 329e337.

Pictorial summary from Braver, T.S., Brown, J.W., 2003. Principle of pleasure prediction: specifying

the neural dynamics of human reward learning. Neuron 38 (2), 150e152.
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Measuring reciprocity and model-building with a
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FIGURE 11.6 Multiround reciprocation game (multiround trust game). Two players
exchange money under a transparent set of rules for 10 rounds. Each round the proposer
(the investor) is given 20 money units and can send any fraction of this to the responder
(the trustee). En route the amount is tripled (a return of 300%). The responder then sends
back any fraction of the tripled amount. Round over. This cycle repeats for 10 rounds, and
all the rules are transparently known to both players. This game has been studied in thou-
sands of participants in fMRI devices (King-Casas et al., 2005, 2008; Montague et al., 2006;
Koshelev et al., 2010; Xiang et al., 2012).
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FIGURE 11.7 Future intended actions in a social exchange game engage striatal

responses consistent with a fashion consistent with a temporal difference model. During
the multiround trust game with another human, striatal responses (in regions modulated by
reciprocity) in responders, when sorted on the responder’s next action (which has not
happened yet), shift from being reactive to the outcome to actually anticipating the offer
of the proposer. This finding was the first to show the plans to act in a social context may
also engage striatal prediction error responses that shift with learning in a fashion analogous
to conditioning experiments (King-Casas et al., 2005).
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Montague et al. showed that during a reciprocating exchange with
another human, the plan to increase payments to one’s partner correlates
with striatal BOLD responses consistent with a dopamine-encoded tem-
poral difference signal that shifts in time across trials in exactly the
manner predicted from the nonhuman primate physiology experiments
(King-Casas et al., 2005; also see King-Casas et al., 2008). This work
showed that even relatively complex social settings and near-term plans
for behavioral change (in the low-dimensional case of sending numbers to
one another) can apparently engage reward prediction systems in a
manner analogous to the basic conditioning experiments detailed above.
However, this particular social exchange has now been used in the context
of psychopathology groups to reveal new ways to classify subjects and
perhaps to reveal ultimately some of the computational processes that are
awry in traditionally defined psychopathology.

11.4 COMPUTATIONAL PROBES OF
PSYCHOPATHOLOGY USING HUMAN SOCIAL

EXCHANGE: HUMAN BIOSENSOR APPROACHES

The multiround reciprocation game shown in Fig. 11.6 is simple in
executiondsend somemoney to partner, it earns a return of 300%, partner
sends back any fraction from 0% to 100% of the tripled amount. Despite
this simplicity, the game requires an enormous amount of cognition to be
intact including (1) responses to “fair” reciprocity, (2) sensitivity to the
horizon (end of game), (3) sensitivity to history of play (intact working
memory and valuation of histories), (4) ability to learn from partner’s
responses, and importantly (5) a capacity to model the partner and the
partner’s model of the subject. Without this last capacity intact, a subject
can neither anticipate the impact of their monetary gestures on their
partner nor can they react appropriately to the partner’s response, which
contains signals for the acceptability of the monetary gesture. So while the
game is simple, it probes subtle and difficult-to-model features of human
social exchange (Ray et al., 2008; Koshelev et al., 2010; Hula et al., 2015).

The basic idea behind our group’s use of this reciprocating exchange is
that it situates humans in an interactive setting that acts as a computa-
tional process primitive for the more complex way that humans sense
model and update their models of other minds. Moreover, as shown in
Fig. 11.7, the game also appears to engage midbrain prediction systems
(putatively dopaminergic) in the same way that simple conditioning
paradigms do. We saw this confluence of results as a way to probe a range
of psychopathology groups. The hypothesis is that humans act as sensi-
tive biosensors of exchange patterns during the game and that different
traditional psychopathology groups might engender different behavioral
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trajectories through the exchange space. Perhaps useful biomarkers could
emerge from such an effort. In testing this idea, one might find different
behavior patterns and different BOLD imaging correlates of the patterns
(Fig. 11.8).

Fig. 11.9 illustrates the basic idea in the context of a near model-free
approach to the measured patterns of exchange (Koshelev et al., 2010;
Xiang et al., 2012). As detailed in Fig. 11.6, each game consists of 10 rounds
of exchange between the investor and the trustee making a complete
game a collection of 10 investments and 10 repayments. As depicted in
Fig. 11.9, these 20 numbers yield a vector {i1, r1, i2, r2,.i10, r10}; however,
this is a reciprocating exchange, subjects respond to immediate partner
responses and they compile in the previous history of responses, and so
on. Thus there are less than 20 independent dimensions latent in the
pattern of exchange. Without committing to a model of how humans in
this setting plan forward their next move or model their partner in detail,
Koshelev et al. used the game and a range of Diagnostic and Statistics
Manual IV (DSM IV) classified partners, applied a Bayesian clustering
scheme to classify the dyads (heathy control playing DSM IV partner),
and generated a quantitative depiction of how a DSM-diagnosed subjects
induces a pattern of play in healthy controls. The technical details of the
clustering are beyond the purposes of this chapter, but the approach
yielded a posterior distribution over the four clusters that emerged so that

R

I

proposer responder

psychopathology groups

MDD, ADHD, ASD 
BPD medicated
BPD unmedicated
healthy controls

The idea:  Neurotypical humans are sensi�ve detectors of interpersonal 
exchange pa�erns – exploit this capacity as a kind of device.

FIGURE 11.8 Biosensor approach to dyadic exchange in humans. Humans may act
as sensitive biosensors when interacting with other humans that display psychopathology.
From Ray, D., King-Casas, B., Montague, P.R., Dayan, P., 2008. Bayesian model of behaviour in

economic games. Adv. Neural Inf. Process. Syst. 21, 1345e1353; King-Casas, B., Sharp, C.,

Lomax-Bream, L., Lohrenz, T., Fonagy, P., Montague, P.R., 2008. The rupture and repair of cooper-

ation in borderline personality disorder. Science 321, 806e810; Koshelev, M., Lohrenz, T., Vannucci,
M., Montague, P.R., 2010. Biosensor approach to psychopathology classification. PLoS Comput. Biol.

6 (10), e1000966. http://dx.doi.org/10.1371/journal.pcbi.1000966; Xiang, T., Ray, D., Lohrenz, T.,

Dayan, P., Montague, P.R., 2012. Computational phenotyping of two-person interactions reveals dif-

ferential neural response to depth-of-thought. PLoS Comput. Biol. 8 (12), e1002841. http://dx.doi.org/
10.1371/journal.pcbi.1002841; Hula, A., Montague, P.R., Dayan, P., 2015. Monte Carlo planning

method estimates planning horizons during interactive social exchange. PLoS Comput. Biol. 11 (6),

e1004254. http://dx.doi.org/10.1371/journal.pcbi.1004254.
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FIGURE 11.9 Bayesian clustering on trajectories through the game space. (A) Two
sampling models: borderline personality disorder (BPD) subject and healthy, use a sampling
procedure over real human data to play healthy human subjects. (B) The ‘simulated agents’
use a K-nearnest neighbor approach to choose the next move in the simulated agent play
conditioned on the pattern of investments and repayments up to the current play. (C) Using
only the pattern of investments and repayments in a game (20 numbers), Koshelev et al.
(2010) developed a classification approach to the trajectories that revealed clusters related
to traditional Diagnostic and Statistics Manual IV classification of subjects that played
healthy subjects in the multiround game. This approach assumed no model for theory-of-
mind and only examined the natural structure that emerged in the game trajectories.
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one could estimate degree of over- or underrepresentation in each cluster.
The results are backed bymeasured behavior (and brain BOLD responses)
from n ¼ 574 subjects, which of course took a while to gather. The large
dataset is important in these kinds of new efforts because we do not yet
know what or how big the “signals” will be. One important feature of the
Koshelev work is that it provided classification insights into traditional
psychopathology groups but using a probe not designed around any
specific notion of how such groups would execute the game. As indicated
in Fig. 11.10 the groups included autism spectrum disorder, borderline
personality disorder (medicated and unmedicated), attention-deficit hy-
peractivity disorder, major depressive disorder, and healthy controls.

FIGURE 11.10 Results of Bayesian cluster analysis on multiround trust trajectories

using Diagnostic and Statistics Manual IV-defined subjects as partners to healthy

controls. A posterior distribution over the clusters was estimated such that a measure of
the degree of over- or underrepresentation in each cluster could be computed. ADHD,
attention-deficit hyperactivity disorder; ASD, autism spectrum disorder; BPD, borderline
personality disorder; Imp, impersonal (subjects never meet); MDD, major depressive disor-
der; Per, personal version (subjects meet before and after). From Koshelev, M., Lohrenz, T.,

Vannucci, M., Montague, P.R., 2010. Biosensor approach to psychopathology classification. PLoS

Comput. Biol. 6 (10), e1000966. http://dx.doi.org/10.1371/journal.pcbi.1000966.
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The biosensor hypothesis, which motivated the Koshelev et al.
approach, was separately tested by the development of a computer agent
that was substituted in the proposer role (the so-called healthy biosensor
role). This agent had the structure of what we have called a “sampling
bot” in that it used the history of investment and repayment exchange to
condition a sampling of the next move from the recorded data on the
multiround trust game. In summary, the bot was designed to play like the
average human response conditioned the actual history of play up to that
point. Koshelev et al. showed that the same basic clusters emerge con-
taining the same over- or underrepresenting.

Using an overlapping dataset and the same social exchange game,
Xiang et al. (2012) took a more in-depth approach by committing to a
computational theory-of-mind model inspired by the work of Harsanyi
(1967); model first described in Ray et al. (2008) on Bayesian players
executing an exchange game with incomplete information. One goal of
the Xiang et al. work was to track the impact of depth-of-thought on both
the behavioral classifications and the associated BOLD responses. The
idea of humans-thinking-about-humans generates lots of discussion
about how lush and complex the ability to model others’ minds could be.
The approach by Xiang et al. is far less lush but commits to the use of a
game of exchange to elicit quantifiable descriptions of depth-of-thought
and other parameters that could classify the computations involved in
modeling other minds. This is just one effort along these lines, but without
committing to and testing a specific computational model of these ca-
pacities, the field will be left with narrative battles about what loosely
described features may or may not be malfunctioning in a particular
disease or injury state (for example, see the computational model of
McClure et al., 2003 addressing the psychologically rendered idea of
incentive salience as “learned wanting” but committing to equations that
capture the effect). In one sense, this work is exceedingly narrow, but the
results suggest that even a simple probedlike a simple two-party recip-
rocation where numbers fly back and forthdmay carve off some of the
computational primitives involved in the capacity to model other minds.

11.5 EPILOGUE: APPROACHANDAVOIDANCE ISNOT
RICH ENOUGH

The preceding discussions have leaned heavily on my own group’s
work using reinforcement learning models (or perspectives) to capture
basic features of social exchange between humans or human-like agents
in pairs or even large groups. We have indicated above how this
approachdguided by the use of structured gamesdmay provide a new
way to depict aspects of traditional symptom-cluster-defined
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psychopathology. However, it is our belief that looking at the valuation of
drugs, the valuation of gestures or potential social gestures of other
humans, and the valuation of mental states important for classifying the
world around will have to reach well beyond simple ideas of approach
and avoidance to provide models that undergird actual human mental
disease. These cracks in the RL armor have long been noted, but we view
them simply as expected shortcomings of early stage efforts to apply these
models to real-world issues such as mental disease (Montague et al., 2012;
Dayan et al., 2015) or cognitive control (reviewed succinctly in Dayan,
2012). The conceptual limitations of approach and avoidance are not a
novel with this chapter, but one that has attracted the attention of leading
RL investigators in the field for almost a decade (Daw and Doya, 2006;
Dayan and Niv, 2008; Gershman et al., 2009; Dayan, 2012; Dayan et al.,
2015). For our purposes, we use the issue to raise the question about the
nature and structure of mental states and the way that they “couple” to
lower level prediction and action choice systems.

In all the preceding discussion of reinforcement learning systems in the
brain (both reward prediction systems and aversive prediction systems
Montague et al., 2015) there was an implicit assumption that the predic-
tion and error correcting systems were primary, low dimensional, and
connected to a collection of devices (the cortex/striatum/hippocampus)
that could flexibly represent the world possibly in useful hierarchical
arrangements. In this sense, animals without a sophisticated cortex could
still solve sophisticated tasks using their efficient prediction systems, but
what is missing in such creatures is the capacity to represent a complex
world in possibly flexibly complex ways. In a sense, this semantically
“adds on” the representation piece as a kind of new feature that came
along with an ever-increasing cortex. However, we would like to forward
the case for the primacy of mental state representations.

In a strong sense such representations are devices for anticipating and
responding to complex environmental challenges posed by the real-world
including the challenges of dealing with other humans (probably the
hardest problem). These representations surely need an intact cortex,
corticostriatal loops, and hippocampuseentorhinal cortex; however, it
also seems reasonable to suggest that the approach and avoidance
rendering of RL models may be missing some key points about such
representations and the way they are designed to interact with lower level
rewarding and aversive events. Placebo effects, expectations, meditation-
induced states (short and long term), and belief states conjured by in-
structions from other humans (or even internal voices) may need to be
treated more “like primary sensory responses” than neural renderings
that occur independent of but appended to lower level prediction sys-
tems. And should this be a fruitful direction then one could expect hier-
archies or nosologies of such states to emerge quite naturally. I am not
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suggesting here a cognitive decomposition, which has long been under-
way, I am suggesting something like a dynamic neural decomposition
that is stable, recallable, and maps naturally on what we might call belief
states (in the vernacular human sense, not the Bayesian statistical sense).
The levels of neural control available to such belief states would neces-
sarily span many levels of the neuraxis and thus be responsible for
cellular and subcellular signaling events at many levelsdmaking such
events difficult to comprehend in the absence of understanding their
place in the structures supporting the state. To date, there is no systematic
suggestion for how a computational psychiatry or any other human-
focused effort should organize its ideas around the possible primacy of
mental states. A few examples will help illustrate my point.

During simple instrumental reward task in Parkinson’s disease
patients Schmidt et al. (2014) found that the expectation that extra
dopamine would be released enhanced behavioral measures of reward
learning and provided strong modulation of BOLD learningerelated
signals. This was possible in these patients because they are routinely
given dopamine precursor drugs as part of their treatment and these
drugs enhance dopamine release in the striatum. Mere expectation of this
effect appearsdat the level of BOLD imaging and quantitative behavioral
readoutsdto enhance dopamine release as well. Now imagine that this is
more like the normal operation of the state “I am getting dopamine” and
that the whole point of egocentric reference in such states is to take control
of powerful brainstem learning and attentional mechanisms. A similar,
but not quite so biologically compelling finding, was reported by Gu et al.
using a simple reinforcement learning task where subjects (who were
smokers) were put in one of two expectation states “I am smoking a
nicotinized cigarette” or “I am smoking a nonnicotinized cigarette.” These
investigators showed that in the presence of nicotine such beliefs differ-
entially activated the striatum in a manner correlated with a value signal
and a reward prediction error signal (Gu et al., 2015a,b; also see Volkow
and Baler, 2015 for commentary and critique). Here the belief of the
presence of nicotine was stronger than the actual presence of nicotine (a
powerful neuroactive substance known to activated brainstem dopami-
nergic system among a number of its effects) in terms of the measured
BOLD signals. In both these examples, the “semantic setup” is abstract
and requires a subject to understand instructions from another human,
and yet the impact of the mental states engendered by this maneuver has
access to changing dopamine release and dopamine-modulated learning
signals putatively generated in collaboration with the brainstem. This
multilevel impact makes those mental states act like coherent devices
fully equipped with sensory, effector, and reinforcer parts. How such
assemblies are selected and remain stable is crucial, but so is under-
standing how such mental states are organized and fit into more
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comprehensive depictions of human cognition pertinent for disease and
the sustenance of healthy mental function.

These two examples illustrate the sense in which approach and avoid is
just one piece in the puzzle of how coherent behavior is organized and
controlled by abstract mental states. This is a clear opportunity for
cognitive and computational approaches to address and blend with what
could be thought of as low-level neurobiological signaling approaches.
There are many efforts reaching in this direction, but a useful and pre-
dictive computational psychiatry will require serious work in the area of
mental states and their neurobiological support if progress, which feels
like progress (i.e., the good kind of progress), is to be made.
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