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SUMMARY

Cortical maps often contain global spatial structure; however, theoretical accounts for their develop-
ment have generally concentrated on reproducing only local structure. We show that the elastic net
model of cortical map formation can closely approximate the global structure of the ocular domi-
nance column map observed in macaque primary visual cortex. A key component is the assumption
of spatially non-uniform and anisotropic correlations in the retina. This work shows how genetic and
epigenetic effects could combine to establish characteristic global structure in cortical maps.

1. INTRODUCTION

A very common representation of sensory or more
abstract information in the cortex is in the form of
maps. In these structures, the stimuli to which neu-
rons best respond are similar moving perpendicular
to the surface of the cortex, while a smooth progres-
sion of optimal stimuli is found moving parallel to
the cortex. Many examples can be found in the vi-
sual, auditory and somatosensory systems. Each of
these maps has a detailed local structure and par-
ticular types of pattern occur over the scale of a
few columns. However, these maps also contain more
global forms of organization. One particularly well-
studied example is that of ocular dominance columns
in the primate primary visual cortex (V1) (Hubel &
Wiesel 1977) (figure 1). Locally, these appear as par-
allel bands. However, on a global scale these bands
show an overall orientation that varies with posi-
tion in V1, are less parallel to each other in the
foveal region, tend to be orthogonal to the borders of
the neighbouring visual cortical area and decrease in
width from the foveal to more peripheral representa-
tions (LeVay et al. 1985; Horton & Hocking 1996).
It is known experimentally that local map structure
(such as the precise position of ocular dominance col-
umn borders) is dependent on neural activity; how-
ever, the source of global structure is unknown.

Theories for how neural activity influences map
formation have been very successful in accounting for
local map structure. For instance in the visual cortex,
such theories have addressed the formation of ocular
dominance columns, orientation maps and disparity
tuning (e.g. von der Malsburg 1973; von der Mals-
burg & Willshaw 1976; Obermayer et al. 1990, 1992;
Berns et al. 1993; for recent reviews see Erwin et
al. (1995) and Swindale (1996)). Theories addressing
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the origin of global structure are less common. Re-
garding topographic distortions, Wolf et al. (1994)
have argued that the influences of input and target
shape, combined with a spatially non-uniform prob-
ability that points in the input space are stimulated,
could be the source of the discontinuities in overall
map topography seen experimentally in some areas
of the visual system (see also Wolf et al. 1996). Re-
garding ocular dominance, Swindale (1980) showed
that asymmetric growth of the target region could
yield globally oriented columns. As discussed by for
instance Obermayer et al. (1990), anisotropic in-
tracortical connectivity could also cause anisotropic
columns. Another suggestion, put forward informally
by Levay et al. (1985) and later investigated compu-
tationally by Jones et al. (1991), Goodhill & Will-
shaw (1994) and Bauer (1995), is that the map-
ping from the two roughly circular lateral genicu-
late nucleus (LGN) layers to the roughly elliptical
cortex has much less topographic stretching when
the two circles are sliced into stripes parallel to the
short (dorsal–ventral) axis of the ellipse compared to
stripes parallel to the long (medial–lateral) axis. In
figure 1 it can be seen that columns indeed run in
the dorsal–ventral direction near the representation
of the optic disc and more peripherally. However, this
theory fails to address the more disordered columnar
pattern in the region of the cortex representing the
fovea, the bias of the columns to run parallel to the
medial–lateral axis in the central region of the oper-
culum and the change in column width between fovea
and periphery.

In this paper, we explore the hypothesis that
these types of detail in the global structure of oc-
ular dominance columns could arise from spatially
non-uniform and anisotropic correlational structure
of activity in the retina. We suggest that the non-
uniformity arises due to the increase in retinal gan-
glion cell (RGC) density proceeding from peripheral
to central retina, while the anisotropy could arise due
to the asymmetric way in which the retina develops.
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Figure 1. A computer reconstruction of the complete pattern of ocular dominance columns in layer 4 of primary visual
cortex of the macaque monkey (right hemisphere). Columns from one eye were labelled by intraocular injection of
[3H]proline. The black region is the representation of the optic disc and lateral to this is the operculum. The lateral
end represents the fovea and the medial end the periphery. The white far-medial region is the monocular crescent.
Between the monocular crescent and the optic disc representation is the calcarine fissure. Reproduced from LeVay et
al. (1985).

Using the elastic net model for cortical map forma-
tion (Durbin & Willshaw 1987; Durbin & Mitchison
1990; Goodhill & Willshaw 1990) we show that a
good approximation to the entire experimentally ob-
served pattern of ocular dominance columns can be
obtained by manipulating just a small number of pa-
rameters. This work demonstrates how influences on
target shape, which we suggest could include trophic
signals that define the shape of target regions com-
petent for innervation, could combine with activity-
dependent effects to govern global features of cortical
map organization.

2. THE MODEL

The elastic net model for cortical mapping (Durbin
& Willshaw 1987) has previously been shown to
reproduce the local structure of ocular dominance
(Goodhill & Willshaw 1990) and orientation (Durbin
& Mitchison 1990) maps. The algorithm works by
trading off two principal constraints: (1) a matching
constraint that assays the degree of match (corre-
lated activity) between an afferent axon and a target
cortical neuron or site; and (2) a smoothness (reg-
ularizing) constraint in the target cortex that en-
courages axons carrying similar information to in-
nervate neighbouring regions of cortex. Representing
the problem at this level of abstraction addresses the
role of several competing influences at once, and is
often more tractable than approaches that assume
particular learning rules operating at synapses.

The two-eye source space is represented by two
two-dimensional hexagonal arrays of points aligned
parallel to each other in a three-dimensional space
(a simplified picture is shown in figure 5). Each
fixed point corresponds to a retinal ganglion cell and
distances between points represent correlations be-
tween locations: correlation strength decreases with
increasing distance (Yuille et al. 1991, 1996). The
cortical units are represented as points in an elastic
sheet. Cortical points are connected to their neigh-
bours by elastic bands that enforce the preserva-
tion of neighbourhood relationships. The mapping
of retinal information onto cortex is represented by

the movement of this elastic net between the two
arrays of retinal points. Each point in the elastic
sheet moves in response to two sets of influences: one
pulling it to locations in the source arrays (match-
ing constraint); and an elastic influence pulling it to-
wards its neighbours (smoothing constraint). As de-
velopment proceeds, the balance of these two influ-
ences is gradually changed until the matching term
dominates and a stable map results. This representa-
tion reduces the correlational structure of the inputs
to two basic parameters: the within-eye spacing d
and the between-eye spacing l (see figure 5).

Formally, the attractive pull from the retinal layer,
representing a weighted matching term for retinal
and cortical points, is given by the first term in equa-
tion (1). It can also be envisioned as representing
competition of the LGN axons for cortical space.
The retractive pull induced by stretching the elas-
tic bands, which encourages the algorithm to find
smooth solutions, is given by the second term in
equation (1). These two types of influences induce a
change in the position of cortical points in the elastic
sheet according to:

∆yj = α
∑
i

wij(xi − yj) + βk
∑

nεN(j)

(yn − yj), (1)

where ∆yj is the change in the position of the cortical
point j, N(j) indexes the neighbours of yj , xi is the
fixed position of LGN point i, α and β are constants
that scale the relative influence of the two influences
and k is another scaling parameter (see later). The
first term describes a pull in direction (xi − yj) of
magnitude wij from LGN point i to cortical point j.
wij is defined as

wij =
Φ(|xi − yj |, k)∑
p

Φ(|xi − yp|, k)
, (2)

where p indexes cortical points, and Φ is given by

Φ(|xi − yj |, k) = exp
(−|xi − yj |2

2k2

)
. (3)

wij represents the normalized pull of LGN point i
on cortical point j. k sets the effective range of the
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Figure 2. Effect of anisotropic correlations. To simplify the effect at the boundaries, both retinal and cortical units are
arranged in square arrays. (a) Normal case: 45 by 45 retina (square grid) and 64 by 64 cortex. The black regions are
cortical points captured by one retina and white regions are cortical points captured by the other retina. Separation of
retinal points: dx = dy = 0.022. (c) Ring-like power spectrum of image in (a) consistent with no preferred orientation of
the columns (Sx, Sy are spatial frequencies in x and y directions). (b) Anisotropic correlations: dx has been multiplied
by 0.6, with dy left unchanged. The bias towards stripes oriented parallel to the y axis is confirmed by the power
spectrum shown in (d). Other parameters: l = 0.08, α = 0.2, β = 4.0, kinit = 0.2, annealing rate is 0.995 (i.e. k was
multiplied by 0.995 after each iteration). The initial position of each cortical point was chosen randomly from the
volume bounded by the two retinae. Simulations were terminated when the ocular dominance pattern was invariant
to further reduction in k.

interaction between the points, and is gradually re-
duced at a fixed rate at each iteration of the algo-
rithm. Reducing k reduces the range over which the
LGN points compete for regions of the cortical sheet.
The energy function describing the effect of these two
forces is

E = −αk
∑
i

log
∑
j

Φ(|xi − yj |, k)

+ 1
2β
∑
j

|yj+1 − yj |2, (4)

where E has the property that ∆yj = −k(∂E/∂yj)
(Durbin & Willshaw 1987; Durbin et al. 1989). It
has been shown that certain types of models based
on local learning rules are related to the elastic net
representation. Both are instantiations, under differ-
ent assumptions, of the same more abstract objective
function (Simic 1990; Yuille 1990; Dayan 1993; Yuille
et al. 1991, 1996). For the simulations reported in
this paper a more efficient optimization proceedure
than steepest descent was used (Durbin & Mitchison
1990).

Previous work with this representation of the map-
ping problem suggested that ocular dominance col-
umn spacing would be wider in the cortex of strabis-
mic cats (Goodhill & Willshaw 1990). Recent exper-
imental work confirms this (Löwel 1994), suggesting
that more global features of map formation may also
be explained by an influence of input correlations
(Goodhill & Löwel 1995). In this paper, we investi-
gate the effect of two types of changes to the previ-
ously studied uniform correlational structure of the
input. First, we introduce a foveal region of increased
density of retinal points, representing stronger corre-
lations between neighbouring retinal ganglion cells in
the fovea. Second, we introduce anisotropic correla-
tions by ‘squashing’ the two retinal sheets so that the
spacing between points is less in one direction than
the other. A possible source for such anisotropic cor-
relations is described in § 5.
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Figure 3. In (a) and (b) there are 2376 retinal units
isotropically arranged in two hexagonal arrays, with
roughly the same number of cortical units as retinal units
in each picture. In (a) these are arranged in a disc of
constant radius, while in (b) they are arranged in an el-
lipse of aspect ratio 2:1 (indicated in cartoon form on
the left). The bias in the latter picture towards stripes
oriented parallel to the short axis of the ellipse can be
clearly seen. Other parameters: l = 0.1, α = 0.2, β = 2.0,
kinit = 0.2, annealing rate = 0.98 (see Bauer (1995) for a
discussion of the parameter regime where this effect oc-
curs). (c) Here an elliptical foveal region of higher source
point density was added in the middle of the source arrays
(cartoon on left). An increase in disorder and a thicken-
ing of the stripes can be seen in this region. The latter
follows from the expression for the optimal stripe width
in equation 6: d is reduced in the fovea. Parameters: total
number of retinal units is 8574, total number of cortical
units = 8598, l = 0.05, α = 0.2, β = 2.0, kinit = 0.2,
annealing rate is 0.985.

3. RESULTS

Figure 2 shows the individual contribution of
anisotropic correlations to the periodicity and overall
alignment of ocular dominance columns. Figure 2a
shows the ocular dominance map that forms when
two retinae of size 45× 45 points are mapped onto a
single cortical sheet of size 64 by 64 points under the

influence of isotropic correlations within each retina,
i.e. retinal points are spaced evenly on a square ar-
ray (other parameter values are given in the figure
legends). The black zones are cortical points cap-
tured by one retina and the white zones are corti-
cal points captured by the other retina. The columns
have no overall preferred orientation; an impression
confirmed by the ring-like fourier power spectrum of
the image (figure 2c). The influence of anisotropic
input correlations on the same mapping is shown
in figure 2b. In this case, the retinal arrays have
been squashed along one dimension, equivalent to in-
troducing input correlations that are stronger along
one dimension than the orthogonal dimension. The
columns now tend to line up perpendicular to the
direction of stronger correlations, a result that can
be explained theoretically by examining directly the
energy of two extreme cases for stripe alignment (see
next section). The alignment and thickening of the
columns suggested by the picture is confirmed by the
power spectrum shown in figure 2d.

Figure 3 illustrates the influence of target shape
and a foveal region on the overall ocular dominance
mapping that forms. In figure 3a, two circular reti-
nae form a mapping with a circular cortical sheet.
The number of retinal units and cortical units are
matched, and correlations in the source space are
isotropic as in figure 3a. No overall orientation to
the ocular dominance columns develops. In figure 3b,
the retinal arrays are still circular and correlations
isotropic, but the shape of the cortical sheet has
changed to ellipsoidal: there are now more points
along one axis than the other (ratio 2:1). This causes
the columns to line up parallel to the short axis of
the cortical sheet. In figure 3c, conditions are similar
to figure 3b except for the addition of a foveal region
with stronger correlations (smaller spacing between
retinal points). The introduction of such a region
causes more disordered columns and also a thicken-
ing of columns in the foveal representation.

Figure 4 shows all the constraints explored above
acting in concert: anisotropic input correlations,
shape of target cortical region, and a foveal region in
the retinae. The scale of the simulation is matched
roughly to the number of columns seen experimen-
tally in the macaque. The model accounts for a num-
ber of details of the overall mapping of ocular domi-
nance columns in primary visual cortex: the thicken-
ing of the columns in the foveal representation (Hor-
ton & Hocking 1996), the increased degree of disorder
of the columns in the foveal representation (LeVay et
al. 1985; Horton & Hocking 1996) and the tendency
of the columns to orient orthogonal to the borders of
the neighbouring visual area and to align somewhat
parallel to the dorsal–ventral axis of the cortex. The
increased disorder in the foveal representation results
from two competing effects: (1) elliptical shape of the
target cortex which causes column alignment parallel
to the short axis of the ellipse; and (2) anisotropic in-
put correlations which encourages column alignment
in the orthogonal direction. The thickening of the
columns in the foveal region results from stronger
correlations (decreased spacing of retinal points).

Proc. R. Soc. Lond. B (1997)
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Figure 4. (a) Combined effect of globally anisotropic correlations, a foveal region, and elliptical target shape, on the
overall stripe pattern. Parameters: total number of retinal units is 16 674, total number of cortical units is 30 393,
aspect ratio of cortical ellipse is 2.3:1, l = 0.02, α = 0.2, β = 2.0, annealing rate is 0.98. In order to ensure correct
overall orientation of the cortex kinit = 0.05, and cortical points were initially topographically ordered with a small
random ocular bias. (b) The distribution of retinal units used to produce the picture shown in (a) (same orientation).
The separation between retinal units perpendicular to the vertical midline was 0.012 in the ‘periphery’, 0.010 in
the ‘macula’, 0.009 in the ‘perifovea’ and 0.008 in the ‘fovea’. Parallel to the vertical midline, these distances were
multiplied by factors of 1.0 in the periphery, 0.8 in the macula, 0.7 in the perifovea and 0.6 in the fovea. Note that these
separations represent correlational relationships rather than physical distances. The circular shape of the boundary of
the region represents our lack of knowledge of the detailed variation in correlations at the boundary in different parts
of the retina: all parts are treated equally.

4. ANALYSIS OF COLUMN ORIENTATION
WITH ANISOTROPIC CORRELATIONS

The explicit objective function for the elastic net
allows the direct calculation of the cost of certain so-
lutions for simple arrangements of points. Here we
perform a simple analysis of column orientation in
the case where there are anisotropic correlations. The
analysis proceeds in the following stages. We first
calculate the length of a one-dimensional path for
columns of fixed width, and optimize this with re-
spect to the column width. Moving then to two di-
mensions, we consider the case where the within-eye
spacing between points in one direction is different
from that in the orthogonal direction. The total cost
for columns running parallel to each direction is com-
pared.

Consider first the one-dimensional situation shown
in figure 5a. Refer to the within-eye spacing between
points as d and the between-eye spacing as l. For N
cells in each eye, the total sum-squared length of the
path for columns of width n can be straightforwardly
calculated to be L (this is for n even: the formula
is slightly different for n odd, but leads to identical
conclusions):

L = 2N( 1
4nd

2 + (l2/n)). (5)

Minimizing with respect to n, we find that the min-
imal length for a columnar solution is when

n = 2l/d, (6)

as previously described (Goodhill & Willshaw 1990;
Goodhill 1992). Substituting this value into equa-
tion (5) yields

L = 2Nld. (7)

Consider now two N ×N arrays on top of each other
(see figure 5b) with gap l and within-sheet separa-
tions d in one direction and s × d in the other di-
rection, where s < 1 is a ‘squashing’ factor, which
determines the degree of anisotropy. For simplicity
we compare only two possible arrangements: columns
running parallel to the normal direction and columns
running parallel to the squashed direction. Which
has lower cost? We have N lengths as given in equa-
tion (7) plus 2×N ×N lengths running in the other
direction, which join up the paths above. For columns
running parallel to the squashed direction this gives
a total length of

L = 2N2d[l + s2d],

and for columns running parallel to the normal we
have

L = 2N2d[ls+ d].

Comparing these two lengths yields a condition for
columns running parallel to the squashed direction
to be favoured:

s > (l/d)− 1.

Thus, for (l/d) > 2, columns running parallel to the
normal direction are always favoured. This may seem
counterintuitive, as it says that columns run across
rather than along the direction of strongest corre-
lation. However, the simulations shown in figure 2
confirm the analysis.

5. DISCUSSION

We have shown that anisotropic correlations in
the input space can significantly influence the over-
all organization of cortical maps. What could be the
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Figure 5. (a) A one-dimensional version of the abstract
representation used. The dots represent retinal cells, and
the distances between them represent correlations. There
are two rows, one representing the left eye and one rep-
resenting the right eye. Cells are regularly spaced with
separation d within an eye, and the two eyes are sepa-
rated by a gap l. As l increases, the correlation between
the two eyes decreases. The line represents the topology
of the mapping to the cortex. The particular mapping
shown is that of regular columns of width n = 4 cells. It
can be shown that the optimal column width in this rep-
resentation is n = (2l/d). (b) A two-dimensional version
of the representation. There are two sheets of dots repre-
senting retinal cells, each in a square array, separated by
a small gap. The particular mapping to the cortex shown
is that of parallel columns of width 4 cells.

biological origin of such correlational anisotropy in
the retina? In the area centralis of cat and monkey
retina, isodensity contours for retinal ganglion cells
(RGCs) form roughly concentric ellipsoidal shapes
(Rapaport & Stone 1984; Perry & Cowey 1985) and
there is a decrease in RGC density proceeding from
central to peripheral retina (Wassle et al. 1990). In
the cat, the progression to this mature state takes
place rapidly where both maturation of synaptic cir-
cuitry and RGC density expand as ellipsoidal regions
centered on the area centralis (Rapaport & Stone
1984). Although data for primates are more sparse,
there is some evidence that a similar process may
be occurring (LaVail et al. 1991; Provis et al. 1985;
Van Driel et al. 1990) and that a central to peripheral
gradient of development also exists for RGC afferents
terminating in the lateral geniculate nucleus (Lachica
& Casagrande 1988). The degree of anisotropy in the
development of local connections between RGCs is
not known. It is possible that, as a result of spon-
taneous activity before visual experience (Galli &
Meaffei 1988; Meister et al. 1991; Wong et al. 1995)
the ellipsoidal contours for RGC development impose

anisotropic spatial structure on the correlations in
early RGC spike production, and that this anisotropy
in correlational structure is passed on to the primary
visual cortex.

While the basic pattern of ocular dominance segre-
gation in the monkey appears to be complete before
birth (Horton & Hocking 1996) in the cat segregation
occurs after eye opening. The correlational struc-
ture of natural scenes is slightly anisotropic (Han-
cock et al. 1992; van der Schaaf & van der Hateren
1996), though presumably not enough to influence
the usually disorded ocular dominance column pat-
tern. However, the model predicts that raising kittens
in a strongly anisotropic visual environment (for in-
stance with cylindrical lenses) should introduce some
global order into the pattern. In particular, the model
predicts that columns will tend to line up parallel to
the direction of weaker correlations.

Although the elastic net embodies a number of
features common to many developmental models, its
previous incarnations have not accounted for global
aspects of map structure. The success of the cur-
rent model strengthens previous suggestions that,
although many biological mechanisms are at work
in the cortex, they may collectively act to satisfy
two broad categories of constraints: matching and
smoothing. The results further suggest that factors
that influence the interaction of input correlations
and target shape can exert control over global fea-
tures of map organization, thus controlling the way
that a given region of cortex organizes and repre-
sents information. Hence, factors that define the on-
togeny of the shapes of competent regions in source
and target will exert a powerful influence on global
map structure. In any area of the cortex, it is easy
to imagine that various neurotrophic and/or neu-
rotropic factors could define different shaped target
regions for different classes of axons invading the
common area. Our assumption about anisotropic cor-
relational structure in the retina is also a version of
this viewpoint: some set of intrinsic retinal mecha-
nisms structures the development of competent re-
gions of retina and induces larger scale spatial struc-
ture in the activity patterns that are sent along to
more central targets. It is possible that a closer theo-
retical examination of these kinds of interactions can
yield insights into map formation throughout the cor-
tex.
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Health and the Center for Theoretical Neuroscience at
Baylor College of Medicine (P.R.M.). We are grateful to
Peter Dayan, Jonathon Horton and David Rapaport for
helpful criticisms, and Christophe Person for help with
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