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Theories of dopamine function are at a crossroads.

Computational models derived from single-unit record-

ings capture changes in dopaminergic neuron firing

rate as a prediction error signal. These models employ

the prediction error signal in two roles: learning to

predict future rewarding events and biasing action

choice. Conversely, pharmacological inhibition or lesion

of dopaminergic neuron function diminishes the ability

of an animal to motivate behaviors directed at acquiring

rewards. These lesion experiments have raised the

possibility that dopamine release encodes a measure of

the incentive value of a contemplated behavioral act.

The most complete psychological idea that captures

this notion frames the dopamine signal as carrying

‘incentive salience’. On the surface, these two compet-

ing accounts of dopamine function seem incommensu-

rate. To the contrary, we demonstrate that both of

these functions can be captured in a single compu-

tational model of the involvement of dopamine in

reward prediction for the purpose of reward seeking.

Many aspects of behavior are dedicated to identifying,
judging and pursuing objects and goals. It has long been
recognized that the mesencephalic dopamine system is
centrally involved in these processes for a range of
behaviors, over and above its role in purely motor
functions. One classic attempt to account for dopamine-
mediated events in reward and motivation was the
anhedonia hypothesis of dopamine dysfunction [1],
which proposed that dopamine release was the hedonic
signal of the brain that represented the pleasure associ-
ated with a primary reward. According to this hypothesis,
deficits caused by interference with dopamine followed
from the lack of this hedonic signal. A variety of
subsequent experimental results have challenged this
initial formulation. In particular, manipulations leading to
reduced dopamine-mediated function do not affect hedonic
responses to primary rewards [2], and increased activity of
dopaminergic neurons is often tied to events that precede
reward consumption [3]. In light of these data, several
theories have been posited to replace the anhedonia
hypothesis, all of which implicate dopamine in reward
anticipation or reward seeking [2,4–6]. These theories are
generally depicted as being inconsistent with one another.

On the contrary, we find that the degree of overlap of the
experimental findings represents a tremendous improve-
ment in our integrated understanding of dopaminergic
neuron function.

We begin with a description of an experiment that
captures the core of the incentive salience hypothesis of
dopamine function. This description is then seated within
the prediction error theory of dopamine function, which
suggests that phasic changes in dopaminergic cell firing
encode an error in the prediction of future reward (Eqn 3)
[3,4]. This approach offers an extendable, mathematical
model that captures the concept of incentive salience. We
also show how this model explains a group of earlier
behavioral experiments that reveal clearly the dual
function of dopamine release as both a learning signal
and an action bias.

The incentive salience hypothesis

The incentive salience hypothesis is grounded in a growing
history of behavioral effects that accrue in response to
manipulation of dopaminergic neuron function. One
singular finding is that dopamine receptor antagonism
does not change the appetitive value of rewards, but
appears to inhibit the ability to initiate actions necessary
to acquire the rewards [2,5–7]. These findings have led to
the idea that dopamine receptor antagonism selectively
inhibits the capacity to initiate reward seeking actions, but
has no effect on the value of the reward to the animal
[2,5–7]. That is, the internal valuation of the reward by
the animal is not changed, but its capacity to act on that
valuation is inhibited. This view of dopamine function is
supported by an enormous body of literature, which we do
not seek to summarize. In our opinion, the most fruitful
summary of these effects is captured in the idea of incentive
salience as proposed by Berridge and Robinson [2] (but see
Refs [5,6] for modifications of their basic proposal). The idea
of incentive salience is that dopamine release assigns
incentive value to objects or behavioral acts. These assigned
values are then available to be used by some action selection
system that makes more valuable actions more likely.
Accordingly, antagonism of dopamine receptor function
does not influence the assignment of value, but does
inhibit the use of these values in choosing actions.

An experiment by Ikemoto and Panksepp [8] (Fig. 1)
highlights the essential features of the incentive salience
hypothesis. Rats were trained to traverse a one-arm mazeCorresponding author: P. Read Montague (read@bcm.tmc.edu).
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to obtain access to sucrose solution at the end (Fig. 1a).
After training, investigators administered either saline or
one of three pharmacological agents into specific areas in
the brain. Two of the manipulations degraded dopamin-
ergic neuron function. Both of these, injection of GABA

into the ventral tegmental area and injection of the
dopamine receptor agonist cis-flupentixol into the
nucleus accumbens, caused dramatic behavioral
deficiencies (Fig. 1b). The baseline levels of movement
of the rats outside the context of the task were
dramatically decreased. Furthermore, their running
speeds within the maze were significantly less than
those of saline controls. However, the treated rats
maintained the same desire for the sucrose solution:
when the investigators moved them to the bottle, they
drank normal volumes of liquid during a 30 s reward
period (Fig. 1b, gray bars). This latter observation
demonstrates that dopaminergic neuron antagonism
did not affect the motivation for the reward of the rats.

These results have been interpreted to mean that
dopamine does not encode the pleasure associated with
rewards, as the anhedonia hypothesis suggests, but
instead enables reward-seeking behaviors. Changes in
dopamine-mediated activity are appropriately timed for
such a role: increased activation precedes reward-motiv-
ated actions, instead of being linked to the time of reward
consumption [4]. Moreover, behavioral measures of affec-
tive reactions to primary rewards are unaltered by
dopaminergic neuron antagonism [2]. Based on these
behavioral data, Berridge and Robinson suggest that
dopamine is responsible for assigning ‘incentive salience’
to objects and behavioral acts. Incentive salience maps
‘liked’ objects or acts to ‘wanted’ objects or acts (i.e. objects
or acts that an animal will ‘work to acquire’) [2,6]. In their
words, dopamine ‘transforms the neural representation of
a stimulus into an object of attraction that animals will
work to acquire’, and this attraction is transferred to
conditioned stimuli associated with reward [2]. This
mapping is illustrated qualitatively in Fig. 2a.

Fig. 1. The incentive salience hypothesis. (a) Rats were trained to traverse a one-

armed maze to obtain sucrose solution at the end. Photosensors (arrows) were

used to determine running speed [blue bars in (b)], in addition to the baseline level

of movement in the start box [green bars in (b)], while access to the runway was

blocked by a door. X1, X2 and X3 represent intermediate states in the model, as

shown in Fig. 3. (b) After training, dopaminergic neuron activity was reduced

either by application of the dopamine receptor antagonist cis-flupentixol in the

nucleus accumbens (NAc) or by injection of GABA into the ventral tegmental area

(VTA). Both manipulations reduced the ability of the rats to initiate the running

needed to acquire the sucrose solution (P , 0:01; loss of ability to ascribe incentive

salience), while leaving the volume of sucrose they consumed unaffected (gray

bars). Using data from Ref. [8].
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Fig. 2. Theories of dopamine function. (a) The incentive salience hypothesis. Dopamine is proposed to be responsible for converting an object or action that is ‘liked’ into

one that is ‘wanted’. In other words, dopamine ascribes incentive salience to objects and actions. This process is necessary to motivate actions aimed at acquiring rewards.

(b) The prediction error hypothesis. Changes in dopaminergic neuron firing rate are hypothesized to encode a prediction error ðdÞ signal as part of a computational system

dedicated to seeking and predicting rewards (temporal-difference model). Inputs from the world (states, st) are used to generate an internal estimate of a value function ðV Þ

according to their learned weights ðwi Þ: The temporal derivative of V is then compared with the current reward received from the world ðrÞ to generate the prediction error

signal, d (through weighting by a factor m and subject to dopamine blockade through b). This error signal is used for two purposes: (1) as a learning signal to improve esti-

mates of wi ; and (2) to bias action selection. It is this latter function, the conversion of learned incentive value into a probability of action, that is equivalent to the incentive

salience hypothesis.
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Several other theories of dopamine function are similar
to the incentive salience hypothesis [5,6,9]. Although these
theories differ in important ways, they all agree on the
singular principle that dopamine function is causally
located between the identification of a potential future
reward and the generation of action to pursue it. Recent
computational accounts of the dopamine system [4,10]
(see also Refs [11,12]) wholly support this hypothesis;
furthermore, the computational models extend the psycho-
logical descriptions by assigning parameters to key
interactions in sets of simple equations. As detailed
below, these models are commonly identified by their
suggestion that changes in dopamine cell firing encode a
prediction error in the amount of expected future reward.

The prediction error theory of dopaminergic neuron

firing and its relationship to a model of incentive salience

Computational accounts of dopamine function start by
identifying the problems that neural reward systems must
solve. One crucial challenge faced by the nervous system is
how to choose actions to obtain food, sex and other natural
rewards required for survival. This formidable problem is
neglected by accounts such as the incentive salience
hypothesis, which leave off after the identification of a
goal. Various solutions to the problem of planning actions
to obtain future reward have been proposed in the
computer science community. A relatively simple approach
is known as temporal difference (TD) learning [13,14]. It is
the algorithm that underlies the prediction error expla-
nation of dopaminergic neuron responses.

The TD algorithm aims to learn an estimate of a value
function, Vp: The function relates the situation at a
particular time, st; to the expected, time-discounted sum
of rewards (idealized as numeric measures r of received
utility) that can be earned into the infinite future. For
simplicity, we use an arbitrary discrete timescale (t; t þ 1
and so on) with no specific relation to continuous real-time
measurements (e.g. in minutes or seconds).

VpðstÞ ¼ E½rt þ g rtþ1 þ g2rtþ2 þ g3rtþ3 þ …� ½Eqn 1�

The expectation is over-randomness in reward delivery
and state transitions, and 0 , g , 1 is a discounting
parameter. Were this function known, optimal decision-
making would simply amount to choosing those actions
that lead to the highest-valued states.

Although Eqn 1 is an infinite sum (so a single instance of
it can never be fully observed), it can be rewritten in a
recursive form [15] that is more suitable for learning:

VpðstÞ ¼ E½rt þ g Vpðstþ1Þ� ½Eqn 2�

The TD algorithm uses this relationship to refine
successively an estimate of Vp; which we call V; using
only finite chunks of experience. Equation 2 can be
rearranged into a measure, d of the extent to which the
value estimates corresponding to a pair of successively
observed states and an observed reward are mutually
consistent:

dðtÞ ¼ rt þ g Vðstþ1Þ2 VðstÞ ½Eqn 3�

This can be used as an ‘error signal’ to nudge VðstÞ

towards a better estimate. For example, unexpected
rewards or increases in Vðstþ1Þ will produce positive dðtÞ;
an indication that VðstÞ was too low; conversely, prediction
of too much reward leads to negative prediction error.
Besides improving an estimate of future reward, d can be
used to bias decision making towards actions that lead to
better-than-expected reward (high d; see below).

A vast amount of neuronal recording data are explained
by hypothesizing that the rate of dopamine neuron spiking
encodes a TD prediction error signal, dðtÞ [3,4,10].
Additionally, the model helps explain dopamine concen-
trations in the striatum during intracranial electrical
stimulation [16,17]. The model also provides an accurate
hypothesis for interpreting activity changes in human
brain reward structures measured using functional
magnetic resonance imaging [18–21].

In the TD model, dopamine serves two purposes
(Fig. 2b). First, it is used as a learning signal for V; and
is therefore hypothesized to be required for learning to
predict future rewards. Second, dopamine release biases
action selection towards situations predictive of reward.
There are several schemes by which value estimates and
the error signal can contribute to decision making, and the
particular method the brain uses is unclear. Dopamine can
affect action selection indirectly through its role in
learning value predictions or, in some formulations
(e.g. Ref. [22]), by directly modifying action selection
weights: positive error increases the value attributed to
some state or action, making it more likely to be chosen in
the future. Dopamine release might also have more direct,
immediate effects on action choice [4,11,12,23]: for
example, as the prediction error reports whether pay-off
is better or worse than expected, it can indicate whether to
continue a course of action or to try something else. We use
a simple action selection model [24] that incorporates both
direct and indirect effects of dopamine on action choice.
The specific details of the action selection function are not
crucial for making our point. Instead, the important point
is that, in both TD theories and the incentive salience
hypothesis, increased dopamine activation has the role of
increasing the likelihood of choosing some action that
leads to reward.

To clarify, we propose that the concept of incentive
salience is the expected future reward (Eqn 1). In addition,
we propose that the role of dopamine in learning to
attribute such expectations to situations that are pre-
dictive of reward (Eqn 3) and in biasing action selection
towards such situations (e.g. Eqn 4) serve as the formal
counterpart to the ideas of Berridge and Robinson [4]
about the role of dopamine in attributing and using
incentive salience.

A TD learning account of incentive salience effects

To illustrate the integrated view outlined above, we
adapted a TD model to the task studied by Ikemoto and
Panksepp (Fig. 3). The world of the rat was modeled as
consisting of five possible states: the start box, the goal box
and three positions within the maze. The model stores an
estimate VðsÞ of the value of each state. From any position
within the maze, the modeled rat could either move
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towards or away from the goal. Upon taking one of these
actions, the rat obtains the reward of that state and is then
allowed to continue until it reaches the goal box, after
which it is returned to the start. The reward delivered was
1 for the goal box and 0 for all other states.

Actions were chosen based on the predicted values
of their successor states, using the decision model of
Egelman et al. [24]. The model sequentially evaluates a
series of possible actions until it decides to accept one. A
prediction error signal (Eqn 3) is computed based on the
successor state of each contemplated action, and the
action is accepted with probability P given by a softmax
function [14]:

P ¼ ð1 þ e2mðdðtÞ2bÞÞ21 ½Eqn 4�

where m is a scaling constant and dopamine receptor
inhibition was modeled by b; a constant subtracted from
the dopamine signal, dðtÞ: If an action is not selected at any
given moment according to P; then time is incremented
forwards and another action is considered. Here, dopa-
mine has direct effects on action selection because it
reports the relative usefulness, dðtÞ; of contemplated
actions. Its indirect effects come from its role in learning
the values V; which underlie these reports. This learning
is accomplished by updating the stored value estimates
following each action, according to

VðsiÞˆ VðsiÞ þ aðdðtÞ2 bÞ ½Eqn 5�

where a is the learning rate and si is the state that has just
been left.

After the value estimates were learned, the effect of high
levels of dopamine receptor inhibition was determined

(Fig. 3). We model dopamine receptor antagonism as a
constant decrease in the modeled dopamine-mediated
signal by subtracting a constant baseline b from the
error signal d in Eqns 4 and 5. This discourages motivated
behavior both through the indirect and direct effects of
dopamine; notably, it directly reduces the probability of
accepting any action (Eqn 4), thereby increasing the time
required to reach the goal (reduced running speed).
This is precisely the effect detailed by Ikemoto and
Panksepp [8] (Fig. 1). In general, under dopamine-
receptor inhibition, the direct dopamine-mediated report
of the desirability (‘incentive salience’) of contemplated
actions is suppressed, and the modeled rat is unable to
engage the actions.

A low concentration of dopamine-receptor antagonists

causes gradual extinction

A subtler pattern of deficits occurs on the same task when
lower concentrations of dopamine-receptor antagonists
are administered. Specifically, behavioral changes do not
occur immediately after drug delivery, but appear only
through repeated exposure (but see Ref. [6]). This slow
unlearning has been likened to the extinction that occurs
when a conditioned stimulus is unpaired from reward
delivery. Ikemoto and Panksepp [5] also cite this result as
counter evidence to the incentive salience hypothesis,
which has no provision (apart from some informal
discussion of incremental attribution of incentive salience
by a ‘boosting’ process) for delayed effects. However, when
incentive salience is placed within a formal computational
framework of reward learning and action selection, then
the phenomenon is easily explainable as gradual extinc-
tion of the value estimates V:

Wise and colleagues [25] tested rats under low
concentrations of the dopamine-receptor antagonist pimo-
zide (0.5 mg kg21 and 1.0 mg kg21), delivered systemi-
cally, on a one-armed maze (as in Ikemoto and Panksepp’s
[5] experiment; Fig. 1a). Treated animals were not initially
worse at the task, but their running times slowed
progressively over the course of a second day of testing,
one week later (Fig. 4a). This behavior mirrored the effects
of extinction in another group of rats from which food was
withheld at the goal (Fig. 4a, NR condition). The fact that
running speeds were not immediately affected argues
against an explanation of the results based on impeded
motor function.

Experience-dependent extinction of response is a direct
consequence of the prediction error hypothesis (Fig. 4b), as
a reduction in the TD error signal caused by dopamine-
receptor inhibition will extinguish value predictions V in
much the same way as reward omission. If the animal has
learned that the goal box is associated with food, no
prediction error should occur when the box is reached and
the food is delivered normally. Thus, dopamine neurons
would be expected to spike at their baseline rate. However,
owing to inhibition of postsynaptic dopamine receptors,
this baseline response would produce a below-baseline
rate of postsynaptic receptor activation, equivalent to
negative prediction error signal at the time of the reward.
This is the same neural response as is seen when rewards
are withheld [10]. In terms of the model, the negative

Fig. 3. Temporal difference model captures rat behavior on maze. (a) The maze

from Fig. 1 is represented as consisting of five states. Virtual rats could either be in

the start box, goal box or one of three intermediate states (X1–X3). Movements

between states were determined by considering candidate transitions, which pro-

duce an error signal ðdÞ; and a probability of taking the considered action. (b) When

virtual dopamine (DA)-receptor antagonists are added (Eqn 4 of main text; b ¼ 1),

the speed with which the rat traverses the maze is significantly decreased, as seen

in real animals.
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prediction error signal should cause a decrease in the
weights that underlie the estimated values of the goal box
and the states that precede it (Eqn 5), causing an
experience-dependent decrease in the action, as seen by
Wise and colleagues.

Thus, according to the model, in situations when
dopamine-receptor antagonism is weak enough only to
disrupt minimally actions through the ‘direct’ action of
dopamine (in the evaluation of the value of a contemplated
action outlined in Eqn 4), ‘indirect’ effects of the
antagonism will nonetheless build up gradually (through
the learning of value weights outlined in Eqn 5). Low
concentrations of pimozide should cause a progressive
decrease of the incentive salience (i.e. expected future
value) attributed to situations predictive of reward, and
thus progressively disrupt actions that seek out such
situations. Our formal computational account of the
attribution and use of incentive salience in a broader
action selection system significantly clarifies this point;
according to the previous informal account, it was unclear
whether the results were to be expected at all.

Concluding remarks

We have proposed a mapping between a psychological
theory of the role of dopamine in reward and motivation,
and a more formal computational theory of how the

neurotransmitter is involved in a larger system for
choosing optimal actions under the motivation of predic-
tion errors. Specifically, we have identified the concept of
incentive salience [2] with the computational notion of
expected future value, and have suggested that the TD
theory of learning future values formalizes Berridge and
Robinson’s ideas about attributing incentive salience
through a ‘boosting’ process. One major advantage of
this maneuver is that the elements of the incentive
salience idea are now parameterized and are quantitat-
ively testable against detailed experimental data. In fact,
there are already extant experimental data that immedi-
ately suggest extensions to the model as described.

In experiments by Ikemoto and Panksepp [8], animals
with dopamine-receptor antagonism in the nucleus
accumbens are poorer at traversing the maze but not at
consuming the reward (e.g. at licking) when compared
with controls. The basic TD framework does not dis-
tinguish these actions: both are motor actions that must be
taken to obtain the primary reward. This point seems
equally problematic for Berridge and Robinson’s original
incentive salience formulation [2], which assumes that
reward consumption is a measure of incentive salience.
The result makes more sense in the context of Ikemoto and
Panksepp’s [5] similar hypothesis, in which dopamine
underlies appetitive behaviors such as approach, but not

Fig. 4. Prediction error hypothesis accounts for extinction of maze running. (a) When rats are given low concentrations of the dopamine-receptor antagonist pimozide after

learning to run a maze for a food-pellet reward, behavioral effects are not immediately seen. Instead, both latency and running speed remain unaffected during repeated

trials on the first training day (Day 1). When tested again one-week later (Day 2), deficits become apparent and become stronger in an experience-dependent manner. Rats

show a slow increase in latency before entering the maze, and decreased running speed through the maze [0.5 mg kg21 (blue) and 1.0 mg kg21 (green) pimozide conditions]

in a manner that parallels the effect of extinction (NR condition, gray). Using data from Ref. [25]. (b) This effect is captured by the prediction error hypothesis as a slow

decrease in estimated values ðV Þ of each state in the maze. The different concentrations of pimozide were captured in the model as different scalar values ðbÞ subtracted

from the dopamine signal, d [b ¼ 0:2 (green) and b ¼ 0:4 (blue), arbitrary units]. Extinction (NR, gray) is captured by setting to zero the reward value of arriving at the goal

box. The model captures the behavioral data in a manner difficult to achieve using the incentive salience hypothesis alone.
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consummatory behaviors such as licking [5]. TD models
are easily extended to incorporate an assumption that
consumptive actions have an automatic or habitual quality
that makes them insensitive to dopamine-receptor inhi-
bition [11,12,26,27]. In particular, Dayan and colleagues
have provided such an extension by modifying a TD model
to include such features of contemporary theories of
instrumental conditioning as habitual versus goal-
directed responding [11,12].

We have shown that various theories of dopamine
function agree to a much greater extent than has been
previously appreciated. In many ways, the appearance of
discrepancies resulted from the different languages used
by in the computationally and psychologically based
arguments. However, when the different semantics are
resolved, commonalities emerge that reveal real progress
in our understanding of dopamine function.

Acknowledgements

P.R.M. and S.M.M. are supported by the Center for Theoretical
Neuroscience (Baylor College of Medicine), The Kane Family Foundation
(P.R.M.), NIMH R01 MH52797 (P.R.M). and NIDA R01 DA11723 (P.R.M.).
N.D. was supported by National Science Foundation grants IIS-9978403
and DGE-9987588.

References

1 Wise, R.A. (1982) Neuroleptics and operant behavior: the anhedonia
hypothesis. Behav. Brain Sci. 5, 39–87

2 Berridge, K.C. and Robinson, T.E. (1998) What is the role of dopamine
in reward: hedonic impact, reward learning, or incentive salience?
Brain Res. Rev. 28, 309–369

3 Schultz, W. (1998) Predictive reward signal of dopamine neurons.
J. Neurophysiol. 80, 1–27

4 Montague, P.R. et al. (1996) A framework for mesencephalic dopamine
systems based on predictive Hebbian learning. J. Neurosci. 16,
1936–1947

5 Ikemoto, S. and Panksepp, J. (1999) The role of nucleus accumbens
dopamine in motivated behavior: a unifying interpretation with
special reference to reward-seeking. Brain Res. Rev. 31, 6–41

6 Salamone, J.D. and Correa, M. (2002) Motivational views of
reinforcement: implications for understanding the behavioral func-
tions of nucleus accumbens dopamine. Behav. Brain Res. 137, 3–25

7 Salamone, J.D. et al. (1997) Behavioral functions of nucleus accumbens

dopamine: empirical and conceptual problems with the anhedonia
hypothesis. Neurosci. Biobehav. Rev. 21, 341–359

8 Ikemoto, S. and Panksepp, J. (1996) Dissociations between appetitive
and consummatory responses by pharmacological manipulations of
reward-relevant brain regions. Behav. Neurosci. 110, 331–345

9 Redgrave, P. (1999) Is the short-latency dopamine response too short to
signal reward error? Trends Neurosci. 22, 146–151

10 Schultz, W. et al. (1997) A neural substrate of prediction and reward.
Science 275, 1593–1599

11 Dayan, P. (2002) Motivated reinforcement learning. In Advances in
Neural Information Processing Systems (14) (Dietterich, T. et al., eds),
pp. 11–18, MIT Press

12 Dayan, P. and Balleine, B.W. (2002) Reward, motivation, and
reinforcement learning. Neuron 36, 285–298

13 Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning, MIT
Press

14 Dayan, P. and Abbott, L.F. (2001) Theoretical Neuroscience, MIT Press
15 Bellman, R.E. (1957) Dynamic Programming, Princeton University

Press
16 Garris, P.A. et al. (1999) Dissociation of dopamine release in the

nucleus accumbens from intracranial self-stimulation. Nature 398,
67–69

17 Kilpatrick, M.R. et al. (2000) Extracellular dopamine dynamics in rat
caudate-putamen during experimenter-delivered and intracranial
self-stimulation. Neuroscience 96, 697–706

18 Berns, G.S. et al. (2001) Predictability modulates human brain
response to reward. J. Neurosci. 21, 2793–2798

19 Pagnoni, G. et al. (2002) Activity in human ventral striatum locked to
errors of reward prediction. Nat. Neurosci. 5, 97–98

20 McClure, S.M. et al. (2003) Temporal prediction errors in a passive
learning task activate human striatum. Neuron 38, 339–346

21 O’Doherty, J. et al. (2003) Temporal difference models and reward-
related learning in the human brain. Neuron 38, 329–337

22 Houk, J.C. et al. (1995) A model of how the basal ganglia generate and
use neural signals that predict reinforcement. In Models of Infor-
mation Processing in the Basal Ganglia (Houk, J.C. et al., eds), MIT
Press

23 Montague, P.R. et al. (1995) Bee foraging in uncertain environments
using predictive Hebbian learning. Nature 377, 725–728

24 Egelman, D.M. et al. (1998) A computational role for dopamine
delivery in human decision-making. J. Cognit. Neurosci. 10, 623–630

25 Wise, R.A. et al. (1978) Neuroleptic-induced anhedonia in rats:
pimozide blocks reward quality of food. Science 201, 262–264

26 Daw, N.D. et al. (2002) Opponent interactions between serotonin and
dopamine. Neural Netw. 15, 603–616

27 Dickinson, A. (1985) Actions and habits – the development of
behavioral autonomy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 308,
67–85

Trends in Neurosciences: a forum for comment

Controversial? Thought-provoking?

If you wish to comment on articles published in Trends in Neurosciences, or would like to discuss issues of broad interest to
neuroscientists, then why not write a Letter to the Editor?

Letters should be up to 700 words. Please state clearly whether you wish the letter to be considered for publication. Letters are often
sent to the author of the original article for their response, in which case both the letter and reply will be published together.

Please note: submission does not guarantee publication

Opinion TRENDS in Neurosciences Vol.26 No.8 August 2003428

http://tins.trends.com

http://www.trends.com

	A computational substrate for incentive salience
	The incentive salience hypothesis
	The prediction error theory of dopaminergic neuron firing and its relationship to a model of incentive salience
	A TD learning account of incentive salience effects
	A low concentration of dopamine-receptor antagonists causes gradual extinction
	Concluding remarks
	Acknowledgements
	References


