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INTRODUCTION

A cartoon description of the goals of cognitive science and neuroscience might read respectively

“how the mind works” and “how the brain works”. In this caricature, there would seem to be

little overlap in the vocabularies employed by each domain. The cartoon cognitive scientist could

speak at length about decision-making and short-term memory in a relatively self-consistent man-

ner without any need to make reference to the language of neuroscience. Likewise, the cartoon

neuroscientist could provide an immense body of physical detail about the function of neurons,

synapses and their component parts. She could even build models about how collections of neu-

rons work together or even how they might have developed.

In both the cognitive and neural cases, such descriptions are inadequate; some phenomena will

appear enduringly complicated, admitting no simple theory at a single level. In the cartoon sce-

narios, it is possible that many mind-like phenomena are not reducible in any strong way to

descriptions enlisting interactions among components in the brain. There are a number of so-

phisticated arguments suggesting why such a reduction is or is not possible, likely, or fruitful -

we do not enter here this debate. Instead, we will illustrate with practical examples the mileage

that can be obtained from a kind of ‘squeeze’ approach to the problem of relating cognitive and

neural descriptions. Complexities found by the cognitive scientist find natural explanation in the

neural substrate; equivalently the natural theoretical context which is necessary for interpreting

the neuroscientist’s results, comes from hypothesized purposes.

This approach is fairly straightforward: take a consistent description of some behavioral or cog-

nitive phenomenon, such as decision-making under simple choice tasks, along with a description

of what may be relevant neural constraints and squeeze. The squeeze amounts to building a con-

nection from the vocabulary in one to domain to the vocabulary in the other. To the extent that

reality and practicality permit, this seat-of-the-pants heuristic for theory construction pushes top-

2



down and bottom-up constraints toward one another - hence, the title of this chapter. The stated

approach clearly exposes our bias: we assume that concepts like attention, reward, memory, de-

cision, etc. will find some mapping onto the descriptions of brain function.

The squeeze was first formalised by David Marr using ideas about computational equivalence.

He showed how different notions of computation can be used in modeling cognitive and neural

phenomena. In his view, cognitive tasks have to be specified precisely enough that one can write

a computer program that demonstrably solves them. The action of collections of neurons that

are believed to be necessary for this task must also be specified precisely enough so that one can

write another computer program that captures their behavior. Crudely speaking, the squeeze is

successful if the two programs are computationally equivalent.

We illustrate the general approach using two examples. The first concerns how animals learn

to predict events in the world that have rewarding consequences and how they can use the pre-

dictions to control their actions in order to optimise their rewards. Here, there is an enormous

amount of neural, behavioral and computational data that can be used to constrain the model at

multiple levels. The second example concerns attention. Attention is less well understood than

prediction at almost any level. We therefore explore at some depth just one aspect, namely what it

could mean for different sets of neural inputs to control the output of a neuron according to differ-

ent contents of attention. Before discussing these examples, we describe classes of neurobiological

models.

METHODS OF NEUROBIOLOGICAL MODELING

There exist two classes of computational models in neurobiology. One concentrates on capturing

closely the substantial information that modern neurobiology has garnered on the processes op-

erating within and between single neurons – e.g. the way that current flows through dendritic
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Figure 1: Simulated neural units. Artificial neural units take on a variety of forms, however, the
general scheme is shown here. A neural unit collects information from other neural units along
connections (synapses). Each connection is associated with a weight (w1; w2; � � � ; wN ) that can be
changed according to preset rules. The unit typically has some integration step (here shown as a
summation) and some kind of non-linearity before producing an output.

or axonal arbors, the effects of the many different sorts of ion channels, the ways that receptor

molecules are influenced by neurotransmitters, etc. These models have been extremely impor-

tant in understanding certain phenomena including the origin of action potentials, oscillations

in membrane potentials, and the integrative function of dendrites. These models have been less

illuminating at a systems level because neurobiological models are intrinsically so complicated.

Moreover, even these detailed models omit large numbers of phenomena and there is no guaran-

tee that the details on which they focus are the appropriate ones.

Computational models in the other class operate at the level of whole neural systems. In the best

examples, the focus is on how collections of neurons cooperate to implement appropriate com-

putations. The neural substrate is represented using artificial neurons that influence one another

through modifiable synapses (see figure 1). The neural units are typically extremely simple rep-

resentations of real neurons and ignore many biophysical details. These representations are then

analyzed using mathematical techniques or simulated on digital computers or both.

The models differ in the kinds and number of details incorporated, depending on the problem

at hand. For us, the squeeze is key – the models have to represent some known feature(s) of the

neural substrate, however, they also have to be simple enough that they admit computational
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analysis at another level. We shall see that the resulting models make both biological and behav-

ioral predictions that can be separately tested.

PREDICTION & REWARD

The ability of an animal to anticipate future salient stimuli is a form of prediction: representations

of sensory events must reliably reflect the likelihood, time, and magnitude of future important

events such as food and danger. Experiments have established that both vertebrates and inver-

tebrates are capable of making and using such predictions to modify their internal models of the

world and to choose actions appropriately. The concept of prediction is a computational one: a

system uses its current state and its past to guess at the likely future state of itself and the world.

Hence, prediction can be defined outside the realm of a behaving animal. As we have described,

however, behavioral experiments are used to assay this capacity in animals.

Unlike prediction, reward is a concept that is defined, not just assayed, by how an animal behaves.

An organism, given multiple behavioral choices, will allocate some portion of its time or visits to

each. Reward is assumed to be a latent quality of each behavioral choice. The magnitude of the

reward content is defined by the relative proportion of time or visits allocated to the choice. This

is a very behaviorist notion, however, it permits the easy quantification of many types of behav-

ioral experiments; especially those involving decisions among alternatives. In past behaviorist

traditions, these kinds of operational definitions became prohibitively restrictive in the classes of

mechanistic explanations that they would permit.

We have been interested in understanding how animals learn to predict and also how they use

rewards to (learn to) choose between actions. Substantial constraints are available from the the-

ory of adaptive and optimal control (how systems of any sort can make predictions and choose

appropriate actions), animal learning theory (the performance of animals in classical and instru-
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mental conditioning tasks) and the neurobiology of reward (studies in electrical self-stimulation

and the neuropharmacology of drugs of addiction). We begin by examining a simple neurobio-

logical model which draws on both behavioral data and physiological data to hypothesize that a

simple and direct representation of reward exists in the brains of honeybees and humans. These

models suggest one way in which predictions are constructed and used by real brains.

Learning & decision-making in honeybees, humans, and networks

We have previously proposed that the representation of reward and expectations about future

reward are constructed in part through systems of neurons situated in the midbrain and basal

forebrain of mammals and in analogous structures in invertebrates. As discussed below, these

groups of neurons are known to be associated with the processing of information about affective

values, send extremely long axons to widespread regions of the brain, and deliver neuromodula-

tory substances including dopamine, serotonin, acetylcholine, and norepinephrine. By appealing

to an established body of computational theory called the method of temporal differences (TD),

we have constructed a theory in which activity patterns in the cerebral cortex make predictions

about future rewarding events through their connections onto subcortical nuclei (figure 2; a nu-

cleus is a group of neurons in the mammalian central nervous system; the analogous structures

in the peripheral nervous system or in invertebrates are called ganglia).

In this TD model, the world for an animal in a conditioning paradigm is cast in simplified form as

a Markov decision problem. Here, there are states, which are signalled by stimuli like lights and

tones or positions in a maze; transitions between states, like transitions in the maze; and actions

like lever presses, which can affect rewards directly and can also affect transitions between states,

as in the maze. The task for the animal is to choose appropriate actions that maximise rewards

over the long term. The challenge is that actions can have delayed affective consequences – eg in a

maze, a poor early move can make for very long paths, but this fact may only be apparent when
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Figure 2: Neural Representation of reward and expected reward. Activity patterns in the cor-
tex construct expectations of the time and magnitude of future rewarding events and send this
information through highly convergent connections to a group of modulatory neurons (labeled
P ). Also converging at neuron P is direct information about rewarding events such as the intake
of food or pleasurable sensations. Neuron P is a linear unit, and, under the assumption that the
cortical activity arrives at P in the form of a temporal derivative, the fluctuating output of P rep-
resents ongoing errors in the predicted amount of total future reward and the amount actually
received. In the absence of direct reward input, the output of P is used to bias actions. In the
presence of direct reward input, the strength of synaptic contacts is modified and this updates the
organism’s model of the world. This arrangement has been used to model the choices made by
flying bees, rats moving in a two-dimensional arena, and humans.
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the animal finally reaches the goal. A standard way to solve such decision problems is called

dynamic programming and comes from the field of optimal control. In dynamic programming, a

system adopts a policy, which is just some consistent way of choosing actions at states, learns to

evaluate states under this policy, and then improves the policy on the basis of these evaluations.

The value of a state under a policy is the average amount of reward that the system can predict it

will receive if it starts in that state and follows its policy. The policy can be improved by choosing

actions that lead to high rather than low value states.

TD offers a method of performing dynamic programming in an approximate manner. The values

of states are estimated using weights. These estimates can be improved by measuring the degree

to which they are inconsistent with each other and with the delivery of rewards and punishments

from the world – eg if two places in a maze are one step apart, then the estimate of the distance

to the goal from one should be one more than the estimate from the other. Any inconsistency is

called a prediction error and is what is used to drive learning. In the model, the fluctuating outputs

of neurons in subcortical nuclei (denoted P in figure 2) represent this prediction error. Hence,

the fluctuating delivery of neuromodulator carries information about these errors to widespread

target regions. If the inconsistency is in estimation of reward, then increases in neuromodulator

delivery literally mean ’things are better than expected’ and decreases in neuromodulator delivery

mean ’things are worse than expected’. In fact this same error signal can have two roles: (1)

training the predictions to be correct - any net bias in the fluctuations indicates an error in the

expectations; and (2) choosing and training the choice of good actions - if the expectations are

correct on average, then a positive fluctuation indicates that the associated action may be better

than average. This second role for the signal implements the approximation to the way that

policies are improved in dynamic programming.

As indicated in figure 2, this basic theory has been applied to bee foraging over fields of flowers,

rats foraging in a two-dimensional arena, and human decision-making on a simple card choice
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task. In the case of the bees and rats, a virtual world was constructed using computers and a

virtual rat and virtual bee were permitted to move about in these worlds. This methodology

provides a fruitful experimental testground for the behaviors that result from the operation of bi-

ological learning rules under the influence of some representation of the environment and sensory

apparatus of the animal.

These models make testable predictions about the behavior expected from the bee, rat, and hu-

man. The models incorporate biological assumptions, hence, they also offer predictions about the

behavior of neurons. In these examples, the unifying factor is a well understood computational

theory that permits us to assign computational functions to specific biological constraints. The

fact that the behavior of the models on foraging, learning, and decision-making tasks matches

the behavior of the appropriate animal provides further support for the approach. As comput-

ing technology evolves, it may become possible to use large-scale simulations to make testable

predictions about the interaction of multiple organisms in a simulated world.

These experiments primarily addressed the issue of behavioral choice. We have used exactly the

same model to study the physiological behavior of neurons that deliver to their targets a neuro-

modulator called dopamine during the course of experiments that probe the way that animals

come to predict events with rewarding consequences. We will describe this in some detail below.

Dopamine and Reward

Dopamine (DA) is a neuromodulator that has long been associated with reward processing. In

the mammalian brain, dopamine is produced and distributed by nuclei located in the midbrain.

One of the dopamine nuclei is called the ventral tegmental area (VTA). The neurons in the VTA

send axons to brain structures known to be involved in reward processing e.g. one important site

is the nucleus accumbens. As outlined below, three major lines of experimental evidence suggest
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that the VTA and dopamine’s action in general are involved in reward processing.

First, drugs like amphetamines, which are known to be addictive, are dopamine reuptake in-

hibitors i.e. they prolong the action of dopamine near the sites where it is released. Second, neural

pathways connected to the VTA are among the best targets for electrical self-stimulation experi-

ments. In these experiments, rats press bars which delivers an electrical current at the site of the

electrode. The rats choose this self-stimulation over food and sex. Third, agents which block the

action of dopamine on dopamine receptors lead to extinction behavior in instrumental condition-

ing: animals that press a bar to get a reward will stop pressing the bar when given the full reward

but under measured doses of haloperidol (a dopamine receptor blocker), as if they were no longer

being rewarded. In spite of these very concrete results suggesting a role for dopamine in reward

processing, the actual relationship between dopamine release and reward delivery is complicated

– e.g. in many cases, the delivery of reward to an animal is not followed by any increase in the

delivery of dopamine.

Dopamine delivery and prediction

Another main source of neurobiological constraints on this issue is a series of experiments per-

formed by Wolfram Schultz and his colleagues (eg Schultz, 1992). They characterised the electro-

physiological properties of dopamine neurons in the monkey VTA and substantia nigra (another

dopamine nucleus involved in motor acts). These workers recorded from dopamine neurons

while animals were learning and performing simple behavioral tasks for reward (apple juice).

These workers found a subset of dopamine neurons in the VTA whose activity clearly relates to

reward processing, but not in a simple fashion.

In one task, monkeys were presented with a light which signaled the delivery of reward (apple

juice) provided that the animal performed an action within a pre-specified amount of time. In the
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context of this simple task, the light consistently predicts that reward will be delivered consequent

on the action. Through training, the animals’ reaction times for the action decrease and they

clearly use the onset of the light stimulus as a cue that reward will follow if they act correctly.

These statements all rely on behavioral assessments; however, Schultz and colleagues found that

the dopamine neurons changed their firing rates in ways that consistently related to the learning

displayed by the animals. A number of consistent features emerged in these studies:

� Early in training (naive animal), most dopamine neurons increased their firing rate when

reward was delivered and showed no change in firing rate upon presentation of the light.

� Later in training (trained animal), most dopamine neurons increased their firing rate when

the light came on and showed no change in firing rate upon delivery of reward.

� If two sensory cues consistently precede delivery of reward, then changes in the dopamine

neurons’ firing rate shift from the reward to the earliest consistent predictor of reward.

Remarkably, these neurobiological data mirror the computational requirements of a prediction

error signal as specified in a theory based on the method of temporal differences (TD). As we

described briefly above, our model for neuromodulatory control of learning and action choice fits

into a temporal-difference framework.The striking fact is that the prediction error signal in TD has

precisely many of the characteristics listed above for the dopamine neurons:

� early on in learning, when the computational agent does not know that a cue predicts the

delivery of reward, it is surprised by the delivery of reward, ie there is a substantial in-

consistency between its predictions and the outcome, and so there is a substantial positive

prediction error (the increase in firing upon delivery of reward).

� Once the agent knows that the cue predicts the reward, then the reward itself is expected
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and leads to no prediction error (after learning, there is no change in firing upon delivery of

reward).

� When the predictive sensory cue appears, it was not predicted, and there is a prediction

error consequent on the cue (after learning, there is an increase in firing after the onset of

the predictive sensory cue).

� For two sensory cues that both predict reward, a TD model learns that the earliest cue can

itself predict the reward that the later cue predicts, and so itself attracts all the net prediction

error.

Of course, there are a number of problems with the model and areas in which we made arbitrary

choices, have gone beyond the available data, or have brushed aside genuine complexities that

might be inconvenient for the model. It is from these problems that behavioral and neurobiologi-

cal experiments naturally arise. Notable concerns are:

� The basal firing rates of the dopamine cells are low (around 1 Hz) suggesting that increases

and decreases in firing rate cannot carry the same amount of detailed information about

prediction errors. This fact, along with other theoretical and experimental observations,

suggest that there may be an opponent system to dopamine that constructs and delivers

information about punishments and also withheld rewards. There is reason to believe that this

might be one of the roles of the serotonin system.

� Through their widespread axons, the dopamine cells distribute information on prediction

error to widespread structures. In its simplest form, the model requires dopamine to con-

trol synaptic plasticity for synapses that construct the predictions. The location(s) of the

memories are also unclear. We have suggested the amygdala as one likely site, based on its

pivotal position in the limbic system and evidence that interfering with the amygdala inter-
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feres with forms of secondary conditioning. This phenomenon probes the affective values

associated with stimuli.

� Some simple learning paradigms are best described in terms of attention: the animal allo-

cates more or less attention to particular stimuli based on its experience with them. This

differential allocation results in more or less learning accruing to those stimuli during learn-

ing. Possible mechanisms behind selective attention are discussed in the next section but

have not been incorporated in the models described above.

These inadequacies nonwithstanding, this model operates at four different levels of descrip-

tion. The temporal-difference model matched animal learning data, however, it also implements

known techniques of optimal control: most notably the engineering technique of dynamic pro-

gramming. This link enables the squeeze – any system implementing an algorithm like temporal-

differences can reliably learn to perform appropriate actions that can even require complex se-

quences of choices. The key signal for temporal-differences is the prediction error. Schultz’s

data strongly support the hypothesis that this error is being carried by the fluctuating output of

dopamine neurons. Assessing the appropriateness of behavior lies in the realm of the ethologists,

providing the fourth descriptive level.

ATTENTION

One critical element missing from the above discussion is attention: how various sensory cues

and prediction errors are marked as being more or less salient. Our examples above have not

provided for such effects. The concept of attention originated in the vocabulary of psychology,

but it has eluded being made computationally, psychologically or neurobiologically crisp. One

category of experimental observation is that, on presenting the same set of stimuli to an animal

on different occasions, different stimuli seem to be favored in terms of reaching consciousness,
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attracting learning, controlling behavior, and even determining the activities of neurons. Other

attentional phenomena such as orienting behavior are not well characterised by this description,

but there is no reason to expect that everything we call attention should comprise a natural class.

Unlike the case of prediction, it is hard to specify a precise computational problem that attention

is solving. One popular possibility is that attention is important because the way that the neural

substrate performs computations is such that it gets confused if multiple cues are processed si-

multaneously. From the experimental end, attentional effects have been probed in various ways.

One is assessing changes in neuronal activity and local blood flow changes in identifiable brain

regions. As described and probed by Michael Posner and his colleagues, attentional effects, as

measured by brain imaging technology, are not associated with a single brain area nor the whole

brain. These workers have sought to determine how attention influences brain activity: either

increasing or decreasing it depending on the tasks to which a subject is put.

In addition to brain imaging experiments, detailed electrical recordings from the brains of alert

primates indicate that attentional effects, as assayed by changes in behavior or perceptual thresh-

olds, correlate with dramatic changes in the electrical activity of identified neurons in areas of

cerebral cortex devoted to vision. The mechanisms and constraints that permit this kind of con-

trol of neural activity are in general unknown. These experiments show clearly the net effect that

certain synapses become ineffective and/or others become augmented, but they do not distin-

guish between radically different types of mechanisms.

Generally, theories of attention are significantly underconstrained by the available data at any

level of description. Attention is therefore a class of phenomena in which interaction between

models and experiment can be particularly crucial in going beyond the phenomenology to the

neural mechanisms – they solicit the very evidence that would make squeezing effective. Below,

we suggest both the spatial scale and neural loci through which attentional effects could emerge
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in a working brain. In all our discussion, we have in mind effects that most likely act at the level

of the cerebral cortex and basal ganglia of mammals, particularly primates.

Spatial scale of attentional mechanisms in the brain

In order to investigate how neural tissue in the cerebral cortex could implement constraints that

resulted in attentional effects, a decision about scale must be made: do attentional effects emerge

at the level of brain regions, neural circuits, single neurons, groups of synapses, single synapses,

or perhaps at an even smaller scale ?

We first inquire about the smallest scale at which neural activity could be modulated. It is already

clear from brain imaging and electrophysiological studies that changes in the activity of groups

of neurons correlate with behaviorally assessed attentional effects. It is therefore reasonable to as-

sume that the activities of single neurons are similarly affected. We suggest here that the physical

substrates of attentional effects in the brain could exist at a smaller scale still: the single synapse.

In the mammalian cortex, synapses average about 1 micron in diameter and their density falls

somewhere between 0.7 and 1.2 billion synapses per cubic millimeter - this amounts to about 1

synapse in every cubic micron of tissue. That is a billion connections in a region about the size of

a match-head. Since the synaptic densities are so high, most notions of ’nearby’ include a large

number of synapses. It is not a sufficient framing of the problem to assert simply that the function

of single synapses is modulated during attentional effects. A number of important points remain:

(1) Where does the information originate that modulates the function of a synapse that receives

this information? (2) How is the information delivered to the synapse in question? (3) What is the

postulated effect on the synapse?

We describe a set of answers to these questions below. We do not delve as deeply into ques-

tion 1; rather, we assume that some region or regions of cortex become specialized to construct
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and distribute the salience of various sensory events. One might expect prefrontal regions to be

particularly involved in the voluntary control of attention. However, one can also imagine that

more local, automatic mechanisms of suppression and enhancement of neural activity are just as

important for attentional processing — e.g. automatic segmentation of a visual scene that permits

recognition of parts of the visual scene. In this latter case, it is unlikely that modular regions of

prefrontal cortex would be the final arbiters.

Embedded in question 2 are subtle issues of how the information is coded and the physical sub-

strates used to transmit it to the synapse. There is a wealth of possibilities here – ranging from

changes to synaptic function caused by the release and vascular distribution of some humoral

factor, to the rapid delivery of a neuromodulator like norephinephrine through activity in axons

originating in the locus coruleus (a midbrain nucleus that distributes norepinephrine to the cere-

bral cortex and other structures). In both cases, synapses can be affected according to a volume

effect: hormones and neuromodulators both act at a distance from their sites of initial distribution.

These mechanisms for distributing attentional information share the problem that the delivery

mechanism communicates information to very many synapses, therefore, synapses which receive

the information need some mechanism to assess whether they should be suppressed or enhanced

on its basis. Temporal correlation between the electrical activity of the synapse and delivery of the

‘attentional signal’ is one way to make this assessment: short-term fluctuations in the ‘bottom-up’

synaptic activity associated with the object of attention would filter through to the areas con-

trolling attention, and would then be reflected in commensurate short-term fluctuations in the

‘top-down’ attentional signal they broadcast. The resulting correlations between these two sig-

nals are straightforward to measure. The neuromodulators could also be targeted more precisely

to particular synapses: the synapses may possess the right combination of receptors making them

more sensitive to a particular neuromodulator or the attentional signal could be targeted through

a fixed anatomical connection. In any case, comparatively few cells deliver neuromodulators to
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enormous numbers of synapses, hence, precision in the delivery of the information is lost and

must be recovered by some other mechanistic trick - we have identified two possible general

schemes.

Below, we outline in detail how specific synapses and/or cells could be selected by some atten-

tional signal. By making the assumption that the synapses is the smallest scale at which control

of neural function can be exercised, we arrive at two different physical schemes for how an atten-

tional signal could be constructed and used in real brains.

The Resource Consumption Principle: attentional selection in volumes of neural tissue

It is well accepted that the synapse is a junction that passes information from one neuron to an-

other neuron or to volumes of neural tissue (white structures in 3 B). In a real nervous system,

information travels from one neuron to another in the form of electrical impulses called action

potentials. Action potentials travel along thin branched fibers called axons that terminate onto

other neurons through enlarged endings called synaptic terminals or boutons. Information about

action potential arrival at a synaptic terminal is passed to the recipient neuron through the rapid

release and diffusion of chemicals from the synaptic terminal. This transfer of information is rapid

because the gap between the end of the axon and the next neuron is very small (� 20 billionths of

a meter); hence, diffusion of the chemical rapidly influences the next neuron. There is one draw-

back: the arrival of the impulse causes calcium to flow very rapidly into the synaptic terminal,

and, without calcium entry, the terminal will not release its neurotransmitter, i.e., no informa-

tion is transmitted to the receiving neuron. Normally, the level of calcium inside the terminal

is extremely low, but when the action potential (electrical impulse) arrives, the calcium flows in

through channels and the levels inside the terminal increase rapidly. This flow of calcium into the

terminal is absolutely necessary for the terminal to function - impulses invading a terminal in a

region of tissue without calcium will not be transmitted to the next neuron. In this context, the
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calcium present outside synapses acts like a limited, shared resource that synapses must obtain

in order to operate. One of us (Montague) has suggested that the above facts about calcium and

neural transmission amount to an abstract processing principle that permits volumes of brain tis-

sue to select a set of functioning synapses. This idea is called the resource consumption principle

(RCP) (see figure 3).

The resource consumption principle appeals to a fluid metaphor when treating the function of

synapses. In this theory, there are two classes of fluids. The first class, called the resource (figure

3), must be moved from outside to inside a synapse in order for the synapse to function. The

second class of fluid is envisioned as a composite of many separate fluids, each representing

different kinds of information delivered throughout a volume of neural tissue through the release

of different types of neurotransmitters. The collection of input signals is treated as a vector and

called a key. As stated, each component of the key is treated as a fluid available homogeneously

throughout a volume of neural tissue.

Synapses are pre-equipped with receptors that recognize different combinations of neurotrans-

mitter fluids. The combination of receptors on each synapse is also envisioned as a vector and

is called a combination lock. Each time a molecule of neurotransmitter binds a receptor, a quan-

tity of the resource is moved from the outside to the inside of the synapse where the binding

takes place. The scheme is: (1) key is presented to a volume of neural tissue, (2) the key matches

some synapses’ locks better than others and causes the matching synapses to consume more of the

shared resource, (3) those synapses that have consumed the most resource tend to function (trans-

mit) (4) at a slower timescale, the resource is replenished in the surrounding volume of tissue (see

figure 4).

Since the resource is in limited supply, synapses that consume it do so at the expense of neigh-

boring synapses in the local volume of tissue. In this fashion, there is enough resource for only
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Figure 3: The Resource Consumption Principle (RCP). A. Synapses immersed in a homoge-
neously distributed resource fluid. Subvolume of this region is shown as inset B. In order to
function, the resource (gray) must be moved into a synapse (white structures). In this particular
example, the space enclosed by the synapses represents over 85% of the volume, therefore, the
resource is in limited supply and is consumable by a small fraction of synapses in the volume (as
shown in C).

a subset of synapses to function (transmit) and so a fierce competition for resource is set up be-

cause of the way that volumes of tissue are organized and the dependence on resource. In a direct

sense, the volume of neural tissue ‘attends’ to those synapses (locks) that have successfully con-

sumed the resource. This description omits detailed considerations about the dynamics of these

processes, but the general idea is communicated.

In these proposed mechanisms, attention to one set of synapses over another is granted as a result

of a competition directly through the tissue space. Long distance tissue volumes interact in the

same manner through longer-range axonal connections that contribute synaptic terminals into

common volumes. The difficult question not answered by this description is how an attentional

signal is broadcast widely enough so that this local competition for resource can automatically

decide on a set of working synapses.

The capacity for some set of synapses to match a particular key must pre-exist within the tissue

before the key is experienced. It is intriguing to ask whether basic organizational properties of

neural tissue define the primitives out of which various forms of attention are constructed. In the
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Figure 4: Matching of locks and keys through a fluid-like connectivity. The collection of signals
that impinge on the volume is represented as a vector v = (v1; v2; v3; � � �) where each component
of the vector vi represents a different signal type. We call this collection of signals the key. Each
component vi of the key is presented homogeneously throughout the volume. In this fashion,
each component of the key acts like a separate fluid homogeneously distributed throughout the
volume. Different synapses are sensitive to different keys because they possess various combi-
nations of receptors each sensitive to one type of fluid ,i.e., one component of v. The collection of
receptors on each synapse can also be envisioned as a vector and is called a combination lock.
As shown, presentation of a particular key matches the combination locks of some synapses bet-
ter than others causing the matching synapses to consume resource. At some preset time after
presentation of the key, the probability that a synapse is activated is a function of the amount of
resource (gray) it has captured. The resource allows the probability that a synapse is activated
(ON) to be a function of the distribution of this required resource ’fluid’. The main idea is that
those synapses marked as ON define the attention of the engine ,i.e., those synapses that work
under the influence of the current key.
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case of the resource consumption principle, attentional limitations result first and foremost from

a commodity that is literally in limited supply and shared throughout a volume of tissue. There

are certainly other strong possibilities for attentional effects that would exist at the level of entire

circuits of neurons. We discuss one possibility below.

Attentional selection in recurrent reverberatory loops

The resource consumption principle (RCP) locates attentional suppression of synapses directly as

a property of the synapses themselves in conjunction with their three dimensional neighborhood.

However, there is a completely different way in which suppression or enhancement could take

effect. The key is to consider the net influences of synapses on the postsynaptic cells. Individual

synapses that are directly suppressed under the RCP could actually be functioning; however, the

postsynaptic cells might not provide a faithful report of their activity i.e. the cells are effectively

inhibited or just not enhanced. It is unlikely that this inhibition is direct, for instance, there are no

long-range GABA-ergic inhibitory axons. The inhibition could however be indirect.

One model for this indirect inhibition or excitation comes from the notion of self-excitatory loops

through the striatum and the thalamus. These are brain regions involved in motor control that

have a critical dependence on dopamine delivery for their proper function. Anatomical data sug-

gest that neurons in somatosensory and motor regions of cerebral cortex project to small clusters

of neurons in the striatum, i.e. there is divergence in the cortex to striatum connections, since

neurons from one area of the cortex project to many striatal clusters, each of which also receives

information from other cortical areas. Conversely, these clusters send information indirectly back

to those same areas of cortex that generated them, i.e. there is convergence in the striatum to cor-

tex connections. The main neurons in the striatum are inhibitory: they may inhibit each other

to a degree partly controlled by dopamine levels (although this is somewhat controversial). The

primary source of this dopamine is the substantia nigra (mentioned above).
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Based on this suggestive anatomy and the physiology of the inhibitory cells in the striatum, it has

been proposed that different motor actions are represented in the cortex and these compete for

control of the motor effectors, e.g. the limbs, at the level of the striatum. The mutual inhibition in

the striatum provides a competitive mechanism by which actions that are incompatible with each

other compete, for example, extensor and flexor muscles for the same movement are not simulta-

neously activated. The effect of winning the competition is that the excitatory loop involving the

neurons representing that action in the cortex and the striatum is ‘opened’ thereby encouraging

the relevant action to be performed. Cells in motor cortex representing actions that do not win

the competition are not boosted in this manner, and so their actions are not performed.

As pointed out by Ann Graybiel and her colleagues at MIT, the anatomy of this system forces

relevant information from the cerebral cortex to compete for control of motor output at the level

of the striatum. Moreover, Graybiel notes that the striatum is the target of a large number of

neuromodulatory systems, allowing many kinds of information to influence the competition for

motor output.

One can conceive of attention directed to one stimulus out of a collection in the same way as

attention directed to one action out of a collection – indeed, Neil Swerdlow and George Koob have

suggested that the nucleus accumbens or ventral striatum might play the same role for stimuli

that the dorsal striatum plays for actions. Cells representing different stimuli in cortex would

therefore compete, not at the level of their synapses or even directly with each other, but rather

at the level of the striatum, competing to gain access to an excitatory loop. Synapses within the

cortex would then appear to be more or less effective according to the victory or defeat of their

postsynaptic cells in the striatal competition.

There is a diverse cocktail of neuromodulator receptors in the nucleus accumbens. These molecu-

lar signaling pathways would then be available to bias the competition in the light of predictions
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of the presence or absence of rewards. There is already direct evidence that dopamine and sero-

tonin exert influence over phenomena in conditioning that have attracted explanations in terms

of attention. Also, patients with schizophrenia, a disease that is believed to involve misfeasance

in the dopamine system, show symptoms suggesting deficits in their attention.

Similar issues about other means of controlling the focus of attention apply to this model as to

the RCP, except that there is now a defined structure on which any manipulations must take their

effect. The connections between prefrontal areas and the basal ganglia could mediate explicit

attentional control – we imagine the system learning how to pay attention to particular stimuli by

learning what outputs to provide to which cell clusters in the striatum.

SUMMARY

We have described both the intents and the processes of neurobiological modeling. The best neu-

robiological models are computationally explicit enough to perform complex tasks that animals

can clearly perform themselves, and close enough to slight abstractions of the neurobiological

data that they can be constrained (and therefore falsified) by neural findings. We have described

the ‘squeeze’ that results in the best circumstances. All models of interesting behaviors are radi-

cally underconstrained at any given level – by taking on results at multiple different levels, even

if they are couched using different vocabularies, the models become much better specified.

We showed two examples of modeling – one rather better worked out than the other. Learning

to predict rewards and act appropriately on the basis of those predictions is highly adaptive.

Although there are many ways that a vertebrate might go about making these predictions, we

pointed to the evidence that they do it in a particular way, by showing the relationship between

the firing of dopamine cells in reward related areas of the brain and a key signal in one class

of prediction algorithms called temporal difference algorithms. This link not only provided a
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rationale behind the otherwise rather perplexing behavior of the dopamine cells in response to

rewards, but also suggested why cells in two different dopamine projecting regions might fire the

same way, and has led to suggestions for a number of other experiments. The same model applies

to the selection and learned selection of good actions in behavioral choice tasks that have been

applied from honey-bees to humans. Of course the model is quite abstract and quite incomplete

in various important ways – however it shows how one can take advantage of the squeeze.

The other topic for modeling is attention. We were able to progress less far in this direction,

mostly because the phenomena are not delimited so well in any of the different vocabularies –

it is just not yet clear exactly what features a model should have. To show that modeling is still

possible even under these circumstances, we focused on a particular notion, which is common

across all models of attention, that synapses change their net efficacies as a result of attentional

processing. According to one model, these efficacies change directly. Synapses are constantly

competing with their literal neighbors for a shared resource, and the competition can be biased

through a number of different message systems in the brain which carry information relevant to

the focus of attention. According to the other model, the relevant synapses do not change their

efficacies directly, but rather the cells that they influence are part of self-excitatory loops through

the striatum. In this latter model, competition happens in the basal ganglia rather than locally in

the cortex, and biasing happens there too. The models are not mutually exclusive.

None of these models is complete – they pose more questions than they answer. Nevertheless,

neurobiological modeling offers a powerful complement to existing experimental techniques in

neurobiology. Our capacity to collect data has far outstripped our capacity to construct appropri-

ate theoretical contexts for them. Experiments are in any case intrinsically theory driven. Neu-

robiological modeling amounts to specifying those theories precisely enough that they can be

programmed or analysed, and specifying them so that they respect the data not only from one

level of inquiry but from them all.
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