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Despite much progress in brain and cognitive sciences, at-
tempts to connect brain function to cognition are hampered by the
large explanatory gap between psychology and neurobiology. In
recent years, a neurocomputational perspective has emerged as the
most promising approach to integrating brain and mind. According
to this perspective, the brain is a special sort of computer, a system of
many parallel neural networks whose operation underlies cognition.
In this paper, we present this neurocomputational perspective and
examine the ways in which this new approach to explaining our
mental skills differs from earlier ones. In particular, we examine its
emerging insights into two domains. First, we explore the neurocom-
putational approach to decision-making, the adaptive guidance of
behavior in the satisfaction of life maintenance goals. Decision-
making is central to all mobile creatures in an uncertain environ-
ment, and this approach reveals a surprising conservation of decision-
making strategies across many species. We then examine the
neurocomputational approach’s new insights into characterizing
cognitive development. In particular, this approach offers the new
framework of self-organization to characterize the complex interac-
tion between neural developmental programs and the environment,
a framework that has important implications for understanding
early intervention. r 1999 Wiley-Liss, Inc.
MRDD Research Reviews 1999; 5:86–99.

Key Words: prediction; temporal differences; learning; develop-
ment; dynamic programming

There is something decidedly strange and immaterial about
our thoughts. They seem to appear from nowhere, are
vivid while present, and we have no access to where they

were before they appeared. Despite these immaterial qualities, all
empirical evidence available today suggests that physical
processes in our nervous systems generate our thoughts. This
same nervous system is the product of a billion years of evolution
and is likely to be extraordinarily complex. It is responsible for a
vast array of tasks required to keep our bodies running properly,
and an equally vast array of information processing tasks related
to our adaptive movements in the world. The exciting prospect
suggested by these observations presents itself quite naturally as a
question: How does the brain give rise to the mind? This
question represents a deep problem that no single approach or
theoretical construct will solve alone. It seems apparent that each
small piece of the answer will itself engender more insight, and
more questions.

The current ambition to connect brain function to
cognition is fueled by a renaissance in the experimental
techniques available to study brains and behavior. At the lowest

levels, cognitive neuroscience roots its theories in a molecular
and cellular understanding, while at the highest level it roots its
theories in new scanning technologies for peering into working
human brains. It would seem that we are on the verge of
connecting brain function to mental function, however, there is
a hold-up–we lack ideas. As strange as it may seem, the empirical
data from molecular neuroscience and behavioral cognitive
science far outstrips our ability to provide satisfying explanations
that connect these two domains. For example, even though we
can identify brain regions where activity is associated with
something interesting like an imagined word, we do not know
how the word is represented in the brain region, which specific
neurons are involved, or how or why they are involved. What
we lack are tools and methods that bridge the gap between the
molecular and the behavioral. In this paper, the framework is
presented for modern computational approaches to brain function
and how its use in two domains has successfully led to insights about
how neural function relates to aspects of cognition and learning.

The Computational Hypothesis
The most fruitful unifying idea that promises to provide

the bridging concepts between brain and mind is that of
computation. The term as used here is more general than what
we commonly associate with desktop computers. The main idea,
introduced in a general way by Alan Turing [Turing, 1937] in
the 1930s, is that a physical system undergoing transitions from
one state to another can be viewed as executing computations
under an appropriate set of assumptions. Rather than give a
general definition of computation and its use in various fields,
computational hypothesis will be presented here as it applies to
neural function, and will show how this can yield heuristics for
discovering how neural tissue provides a substrate for cognition.

For nervous systems, the computational hypothesis has
two parts:

(1) The physical states of the brain represent the external
world, the body, and other parts of the nervous
system.
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(2) Transitions between these
physical states constitute com-
putations or transformations on
these representations.

How can the computational hy-
pothesis serve to connect neural function
to cognitive function? The answer is that
it gives a kind of heuristic for discovering
explanations that connect the two do-
mains. The main idea is to establish the
computational equivalence of two sys-
tems. It is best illustrated with an
example: Suppose that there was some
cognitive task, like a simple decision-
making task, and one suspected that
activity in a particular group of neurons
was involved in the decisions made by a
subject on this task. The basic idea is to
decompose the cognitive task into con-
stituent parts in a manner that allows one
to write a computer program to solve the
task. Now do the same for the neurons
that you suspect are involved in the task,
i.e., write a program (or specify a set of
equations) to account for their activity
during the execution of the task. Crudely,
if the two programs are equivalent, then
the connection between the neural and
cognitive substrate has been made. This
might be called the principle of compu-
tational equivalence [Churchland and
Sejnowski, 1992]. This equivalence does
not of course ensure that the connection
is real. Experiments must be carried out
in order to establish whether the action of
the neural circuit actually causes the
decisions that are made.

The Incompleteness of
‘‘Brain-Neutral Cognition’’

The computational heuristic out-
lined above implicitly suggests a distinc-
tion between neural implementation (the
hardware) and cognition (the software).
The strong separation of function and
implementation is a misleading metaphor
for the brain; however, it is an idea
common to modern computer science–
computer programs and their functions
are independent of the way they are
implemented in particular machines. This
same point of view has been taken for the
brain, and generally falls under the term
functionalism [Fodor, 1981; Pylyshyn,
1984]. The functionalist position has
been very effective in guiding ideas about
computational functions; however, the
clean hardware/software distinction that
it conjures is misleading in seductive
ways.

First, it is not clear if one can simply
discover how cognition works based on
some guiding computational notions.
This was the point of view taken in the
early days of artificial intelligence, i.e.,

early investigators thought that the really
important problem was to find the
functions or computations being imple-
mented by the brain independent of the
specifics of their implementation using
biological components. This view is now
seen as impoverished because as struc-
tures constructed by evolution, most
creatures are tightly woven into particular
environmental and social niches, and are
the ’answers’ to manifold questions posed
by their environs. It seems reasonable
therefore that we must cheat a little. That
is, evolution has already discovered how
to self-organize minds; therefore, why
not investigate the tricks played by the
neural substrates to try to guess at its
computational functions?

Secondly, there is a misleading and
implicit assumption about the nature of
hardware and software in the brain. By
asking why cognition must run on neural
hardware or by using phrases like neural
implementation, one implicitly buys into
the seductive computer metaphor where
cognition is software and neural compo-
nents are hardware. The division of
hardware and software in the brain is not
that clear.

Lastly, even if it is possible to
generate a brain-neutral or strictly function-
alist account of cognition, which seems
unlikely, such an explanation would be
grossly incomplete. Events in the brain
and their effects on behavior and cogni-
tion are a central concern to humans. The
effects of disease, injury, birth trauma,
drugs of abuse, and impoverished environ-
ments are all known to perturb brain
structure and function. These changes in
brain function are associated with dra-
matic and deleterious changes in mental
function that bring with them enormous
fiscal and social costs: Parkinson’s disease,
schizophrenia, depression, addiction,
learning disabilities, behavioral problems,
etc. Moreover, pharmacological and be-
havioral therapies for these disorders
engage specific neural systems; therefore,
our main means of intervention operate
in large part at the level of the neural
substrate. Although these therapies seek
to achieve a behavioral endpoint, the
changes take place in the neural substrate.
These facts alone make imperative the
search for explanations that connect
neural function to mental function even
if the connection is remote. It must also
be emphasized that the connection is not
necessarily remote.

With these issues in mind let us
review where we are. We have now
summarized how and why the computa-
tional framework may provide a link
from the operation of neural substrates to

the operations involved in human cogni-
tion. This framework for investigating
both cognitive and neural function has
been developed by a number of philoso-
phers, cognitive scientists, neuroscien-
tists, and physicists. It cuts across tradi-
tional knowledge domains, and as an
explanatory framework it is still under
active investigation. In fact, the extent to
which all physical systems can be viewed
as computational systems remains a hot
topic all over the world [e.g., Gershenfeld
and Chuang, 1998]. It is clear that
computation is more than some series of
manipulations carried out on a set of data,
rather, it is one way to explain cognition
as resulting from the operations carried
out by neural substrates.

We have now set up the computa-
tional framework as a means of explaining
various connections between mind and
brain. We explore how this computa-
tional framework can be applied to the
brain for a specific class of neuromodula-
tory neuron present in the midbrain. We
then explore computational studies of
development and consider some lessons it
may hold for understanding development
and early intervention.

Biological Decision Making
We make decisions every day.

Should we choose the blue flowers or the
yellow flowers? Should we go to this
restaurant or that one? Should we move
away from an aggressive person or do
they present no real threat? Some deci-
sions require immediate actions, which
deliver immediate consequences, while
the future impact of other decisions may
not be known for many years, e.g.,
should I marry this person or not? Casting
decision making at a conscious, egocen-
tric level is misleading, and masks the fact
that our nervous system is constantly
making important, life-preserving deci-
sions moment by moment. In general,
decision making is a much more auto-
matic process than our intuitions would
first reveal, and necessarily so since there
are simply too many crucial decisions to
make moment to moment.

Different parts of the nervous
system must decide when to increase
heart rate, change the resistance of the
blood vessels in limbs, direct an eye
movement toward an interesting or
potentially threatening region of visual
space, and so on. These and many other
automatic decisions must occur quickly
and accurately with the consequences
ranging from the successful acquisition of
food and sex to some dismal event like an
injury that results in death. Even a task as
complex as choosing a mate is subject to
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certain automatic mechanisms that assay a
host of measurable features in the poten-
tial mate. Although humans appear to
have the capacity to interject conscious
control and evaluation into many deci-
sions, automatic neural processes also play
an important, yet unconscious role. The
algorithms employed by such decision-
making mechanisms have been engi-
neered by the many survival constraints
placed on any mobile creature. There is

one evolutionary constraint placed on
every adaptive system on this planet, the
uncertainty of the future.

For any physical system capable of
recording its experiences, uncertainty
exists primarily in one direction–the
future, not the past. In principle, this
system can know the events it has
experienced and recorded, while its
future lies before it uncertain. To be
reproductively successful, any organism
on this planet must possess mechanisms to
deal with the uncertain future. One way
an organism can deal with uncertainty is
to reduce it by using information gath-
ered from the past to predict future events
important for survival. It is easy to see that
uncertainty about future events has a real
cost: If events from my past do not help
me acquire resources in the future, then I
am not likely to be reproductively
successful. It is therefore not surprising
that all adaptive organisms have evolved
numerous predictive mechanisms that
guide both learning and decision making.

Neural Mechanisms That
Anticipate Future Reward

One important prediction made by
a host of creatures is the time and
magnitude of future rewarding events. As
outlined above, prediction is a computa-
tional idea; a system uses its past experi-
ence to make guesses at the likely future
state of itself and its surroundings. Re-
ward is a behavioral idea. It is used to
characterize the value that a creature
attributes to objects, internal physical
states, actions, and so forth. For example,
for bees, nectar is rewarding, and for
humans, food and sex are rewarding. The
reward associated with an object in the
world can be measured behaviorally.
Given two objects like an apple and a
block of wood, the reward content of
each is defined by the relative amount of
time an animal spends with each object.
In this case, reward is conventionally
considered a latent property of the object.
Reward is not, however, a static quality
of objects or behavioral acts, but can
depend on the internal state of an animal
as well as its history of experience.

To recap briefly, uncertainty about
the future has acted as a powerful
selective pressure on all adaptive systems.
Prediction is a computational idea that
provides a way to reduce uncertainty
about the future by using the past to
prognosticate the future. Good predic-
tions about the future permit an adaptive
system to acquire more resources based
on its past experience with the world.
Such prediction may take place ‘on-line’
in a single mobile organism, or may

express itself as something more indirect
like the simple strategy of overproducing
progeny. Reward is associated with
resources, like food and sex, known to be
directly related to the reproductive suc-
cess of individual organisms. Prediction
about the likely time and magnitude of
future rewards is therefore a fundamental
task faced by all adaptive systems on this
planet [Montague & Sejnowski, 1994].

The Existence and Function of
Predictor Neurons

It has been discovered that humans
and bees share a common computational
mechanism for making predictions about
the likely time and magnitude of future
reward [Schultz and Romo, 1990; Quartz
et al., 1992; Schultz et al., 1993; Ham-
mer, 1993]. Experiments also show that
this common computational mechanism
appears to be implemented by homolo-
gous neural structures present in the
brains of both humans and bees. These
findings show a fascinating conservation
of both computational strategy and neural
substrate.

There are neurons situated at the
base of the brain (Fig. 1) that use
information from the world and other
parts of the nervous system to make
sophisticated guesses about future reward.
These guesses are apparently used by bees
and humans in at least two roles:

(1) to guide learning, which im-
proves future guesses, and

(2) to guide decision making about
which actions lead to future
reward [Montague et al., 1993,
1995, 1996; Schultz et al.,
1997].

These neurons appear to be responsible
for sending out an ongoing ‘economic
evaluation’ of whether the current state
of the organism predicts that the near
future is likely to be rewarding (Fig. 2).

More specifically, changes in the
firing rate of these neurons represent a
prediction error about future reward, i.e.,
the ongoing difference between the
expected amount of reward and the
actual amount received. These same
changes in firing rate are associated with
changes in neurotransmitter release from
the synaptic connections made by these
neurons (Fig. 3). Hence, the prediction
error is probably translated into changes
in neurotransmitter delivery. In humans,
this neurotransmitter is dopamine, and in
bees, the neurotransmitter is octopamine
(a close chemical relative of dopamine).
These neurons make synaptic connec-
tions throughout widespread regions of
the nervous system (Figs. 1, 2); therefore,

Fig. 1. Neuromodulatory neurons in
bee brain and dopamine projections in
human brain play homologous roles.
Systems like the dopamine system in
humans and the octopamine system in
bees are called diffuse neuromodula-
tory systems, diffuse because the axons
of the neurons are diffusely projecting,
making synaptic connections through-
out widespread brain regions, neuro-
modulatory because the neurotransmit-
ters released from these axons are
thought to modulate global brain states.
Computational models show that neu-
ral activity in some of these neurons
distributes information about expected
reward based on previous sensory expe-
rience. In both species, the diffuse neu-
rons receive pre-categorized informa-
tion about rewarding events and
combine this with sensory information
to construct a scalar signal that repre-
sents errors between the expected
amount of reward and the amount actu-
ally received. Using this signal to control
long-term changes in synaptic weights
allows the system to learn and store
predictions rather than correlations.
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the prediction error is simultaneously
broadcast to many brain structures at
once.

How is the prediction error signal
constructed and improved in a real brain?
In both bees and humans, it appears that
input from sensory representations may
construct the predictions through a set of
adaptable synaptic strengths (weights)
(Fig. 2). If the prediction error is carried
by dopamine fluctuations (as in primates),
then synaptic plasticity that depended on
such fluctuations would in principle
allow a target neural structure to improve
predictions about future reward. In re-
gions of the nervous system related to
action selection, this signal can be used
directly to evaluate the likely future
‘‘goodness’’ of a planned action. As
described below, this computational
framework is derived from well-under-
stood computational methods of adaptive
control.

Detailed Requirements for
Constructing a Prediction Error
Signal in Real Brains

One way for an animal to make
predictions about future reward is to
possess a system that reports its current
best guess, and have learning be contin-
gent on errors in this guess. The construc-
tion, delivery, and use of an error signal
related to predictions about future stimuli
would require the following [Montague
et al., 1996]:

i) access to a representation of the
phenomenon to be predicted
such as the amount of reward or
food;

ii) access to the current predictions
so that they can be compared to
the phenomenon to be pre-
dicted;

iii) capacity to influence plasticity
in structures responsible for
constructing the predictions;

iv) sufficiently wide broadcast of
the error signal so that stimuli
in different modalities can be
used to make and respond to
the predictions.

These general requirements are
met by a number of neuromodulatory
systems including dopamine systems in
humans and primates, and octopamine
system in bees (Fig. 1). Neuromodulatory
neurons receive synaptic input that car-
ries information about reward as well as
information from sensory representa-
tions. This input originates from wide-
spread regions of the nervous system and
converges on a relatively small number of
neuromodulatory neurons. This high

Fig. 2. Temporal difference model of midbrain dopamine neurons. Neurons in the
ventral tegmental area (VTA) receive two classes of input: (1) input from sensory
representations, which arrives in the form of a surprise signal, and (2) information about
reward, self-made movements, etc. M1 and M2 represent different modules or modali-
ties. The surprise signal means that activity along these inputs encodes the degree to
which the current state is different from the last state. This kind of signal could even arise
from modules that analyzed complex features of a situation. The signals along r(t) are
construed as reward signals (see text), but are meant to represent information already
categorized as important—it is this signal which the predictor neurons learn to anticipate.
By combining (adding) these signals, the output of the VTA neuron, d(t) 5 r(t) 1 (t) V̇can
be interpreted as a prediction error [Sutton and Barto, 1981; Sutton, 1988; Montague et
al., 1996; Schultz et al., 1997]. The synaptic weights along the path to the VTA represent
stored predictions.

Fig. 3. Biological interpretation at the synaptic terminals of predictor neurons. Positive
prediction errors are encoded as an increase in spike production and dopamine delivery.
They indicate that the current state is ‘‘better than expected.’’ Negative prediction errors
are encoded as a decrease in spike production and dopamine delivery. They indicate that
the current state is ‘‘worse than expected.’’ This kind of signal can be used in dual roles: (1)
to improve predictions, and (2) to control on-line selection of actions
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degree of convergence effectively dis-
cards the identity of the source of
information so that it is reasonable to
assume that neuromodulatory neurons
produce only a scalar output signal.

The computational model of the
dopamine system receives sensory infor-
mation separately in the form of a surprise

signal (denoted V̇(t) in Fig. 2) and a
reward signal (r(t) in Fig. 2). The idea of
the surprise signal is straightforward: It
encodes the degree to which the current
sensory state is different from the immedi-
ately preceding sensory state. The predic-
tor neuron (labeled VTA) simply adds
these two signals together to produce a

change in its output d(t) 5 r(t) 1 V̇(t). In
doing so, the change in spike output d(t)
of the predictor neuron reflects an
ongoing prediction error in future expected
reward (see legend for Fig. 2).

The most detailed data about the
nature of neural processing in the dopa-
mine system comes from extensive elec-
trophysiological studies over more than
fifteen years by Wolfram Schultz and his
collaborators [e.g., Schultz, 1992; Schultz
and Romo, 1990; Schultz et al., 1993]. In
these experiments, the activity of single
dopamine neurons is recorded in alert
monkeys while they learn to perform
behavioral tasks and receive rewards. For
untrained monkeys, dopamine neurons
respond with transient increases in their
firing rate when the monkeys are pre-
sented with appetite stimuli like a morsel
of apple (Fig. 3). The neurons act
surprised by the unanticipated arrival of
reward. The monkeys also act surprised
(assayed behaviorally). However, if a
sensory cue like a light or tone consis-
tently precedes (predicts) the delivery of
reward, a remarkable change occurs in both
the electrical behavior of the neurons and the
behavior of the monkeys.

After repeated pairings of a sensory
cue followed by reward, dopamine neu-
rons change the time of their phasic
activation from just after the time of
reward delivery to the time of sensory cue
onset (Fig. 4). Moreover, the neurons no
longer respond to the delivery of reward
if it occurs at the expected time. During
this pairing process, if the reward is not
delivered at the expected time, the
dopamine neurons dramatically decrease
their firing rate at the time the reward
would have been delivered. The transfer
of the dopamine neuron activity is
paralleled by a behavioral transfer in the
monkey: After training, the onset of the
predictive sensory cue causes the monkey
to act like it expects reward at a particular
time.

The neurons are actually more
sophisticated than this previous descrip-
tion implies. This claim is illustrated by
the behavior of the neurons in the
presence of multiple predictors of reward.
For example, repeated presentation of the
sequence

light 1
1 sec

= light 2
2 sec

= reward

is associated with the following changes.
During early trials, the delivery of the
reward produces increased firing rate as
before; however, after training, only the
earliest cue is associated with increased
firing rate. The activity transfers to the
earliest predictive sensory cue, and ap-

Fig. 4. Predictor neurons in primate dopamine system. Experimental data from predictor
neurons located in primate midbrain [modified from Schultz, Dayan, Montague, 1997].
Each panel shows electrical recordings from individual dopamine neurons from an alert
primate during a task where a sensory cue is presented followed 1 second later by the
delivery of a juice reward. Each dot is the occurrence of an action potential and each
horizontal row of dots represents a single presentation of the sensory cue and reward.
The histogram on top of each panel is simply a total of the number of action potentials in
a particular time bin. Top: Presentation of a sensory cue to a naive monkey causes no
change in action potential production, however, delivery of juice reward causes transient
increase in rate. Middle: Presentation of sensory cue causes transient increase in spike
production but delivery of reward causes no change in firing rate. Bottom: Same as
middle except that if reward is not delivered, the dopamine neurons stop firing at the
time that the reward would have been delivered based on previous trials. The interpreta-
tion is that the neurons are predicting the time and magnitude of the future reward using
information provided by the earliest predictive sensory cue.
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pears to ignore intermediate cues that
predict the same future event. As de-
scribed below, this neural behavior can
be understood using computational theo-
ries of adaptive optimizing control.

A Temporal Difference
Model Explains Activity
of Predictor Neurons

The computational model that we
have developed predicts this exact pattern
of dopamine neuron activity. In addition,
the model predicts activity patterns in the
dopamine neurons during behavioral
tasks that have not yet been tested in
experiments. The model is based on a
computational theory called temporal
difference learning developed by Sutton
& Barto in the early 1980s [Sutton and
Barto, 1981,1990; Sutton, 1988].

In temporal difference learning, a
system uses adaptable weights to make
predictions of the time and magnitude of
the reward it expects to receive in the
future and provides a continual output of
the error in the prediction. Instead of
learning just about the reward expected
in the near future, this method learns to
predict the total amount of reward
expected for long times into the future.
These prediction errors drive learning
(synaptic weight changes in our neural
case) that improve predictions made by
the system. The activity recorded in the
dopamine neurons during learning tasks
(Fig. 4) suggests strongly that these cells
are reporting prediction errors in the future
delivery of reward, which is exactly the
signal that temporal difference learning
requires to operate.

The architecture of the model
mimics the architecture of neuromodula-
tory systems in bees and humans. As
detailed in Figure 5, the output of the
model yields exactly the experimental
results taken from experiments by Wol-
fram Schultz (Fig. 4). The model also
accounts for many more complicated
experiments, but the example included
here makes all the basic points.

The model learns to improve its
predictions by using the broadcast predic-
tion error signal encoded in the changes
in dopamine delivery. This learning takes
place in a simple way: Changes in
synaptic strength are proportional to the
product of the prediction error signal
(dopamine fluctuation) and activity in
target neurons. Simple learning rules
analogous to this one have been used for
many years by psychologists, engineers,
and neurobiologists. In a biological con-
text, these previous rules have generally
focused on learning associations or corre-
lations between experienced events. Us-

ing the prediction error signal as one
factor in a simple multiplicative rule
allows the model to learn and store
predictions rather than correlations (asso-
ciations).

Using the Prediction Error Signal
to Select Actions

The computational framework pre-
sented above would be interesting if it
only accounted for a common neural
processing strategy in bees and humans.
There is another important use to which
the prediction error signal can be put, the
evaluation of possible future actions. We
have shown that the same signal is likely
to be used by bees and primates to select
planned actions, i.e., to make decisions.
The first hint that this is true comes from
the monkey work—the transfer of firing
observed for dopamine neurons is paral-
leled by changes in behavior of the
monkeys.

Perhaps the monkeys are actually
using the fluctuation in dopamine deliv-
ery to help select their actions. The
anatomy of the dopamine axons supports
this hypothesis; the dopamine neurons
make connections throughout neural
structures well known to be involved in
motor planning and the sequencing of
motor actions. This possibility in mon-
keys is mirrored by similar data from
invertebrates where neuromodulator de-
livery directly influences motor behavior.
These observations show that, in humans
and bees, the prediction error signal is

likely to be available to neural structures
involved in action selection. Not only is
the signal available in the relevant neural
structures, it is precisely the correct kind
of signal for directing the selection of
actions. This latter assertion is explained
below.

There is a principled way to use just
such an on-line prediction error to
choose sequences of actions or to learn
how to choose optimal sequences of
actions. This method is called dynamic
programming, and was discovered in the
late 1950s by Richard Bellman [Bellman,
1957]. The problem taken on by dynamic
programming is called the temporal credit
assignment problem, i.e., actions at one
point in time can affect important future
events in complicated ways.

For example, an organism may
have taken many actions prior to some
important future event like a bump on
the head or the acquisition of food. How
does the organism assign credit to the
prior actions most responsible for its
current state? Consider the cartoon ex-
ample in Figure 6. The bug walking
along a tabletop falls off and bumps its
head; however, its last few steps are not
primarily responsible for the bump. Once
it passes through the narrow opening in
the barricade, the number of paths that
lead to a bumped head far outnumber the
number of paths that lead to freedom.
One wrong move plus statistics gave the
bug its bump. Although this is an
overstatement, one very important action

Fig. 5. Response of temporal difference model. This surface shows the changes in the
prediction error signal (output of dopamine neuron) during training. The time base is
arbitrary, but the sensory cue and reward were always separated by the same number of
time steps. Early trials: model gives positive response to delivery of reward and no
response to sensory cue. Late trials: model gives positive response to sensory cue and no
response to reward. If the reward is not delivered, the model gives negative response at
the expected time of reward. Compare these responses to those in Figure 4.

The same responses will develop in the presence of multiple predictive sensory cues.
Other more complex profiles are also known, and they are accounted for by this model.
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was the one where the bug stepped
through the narrow opening in the
barricade; this action should get a lot of
credit for the bump.

Dynamic programming solves the
temporal credit assignment problem us-
ing the idea of a policy [Howard, 1960]. A
policy indicates how specific actions are
assigned to specific states. For our pur-
poses, the state of the bug is its collection
of sensory cues at each position on the
tabletop. The goal of the bug is to
improve its policy through interaction
with its environment. To perform dy-
namic programming, the bug requires an
on-line evaluation of its current state,
along with the capacity to use the
evaluation to choose an appropriate
action. The evaluation used by dynamic
programming is the total future rewards
expected from each position on the table.
This is precisely what the temporal
difference method learns. Hence, the
output of the predictor neurons is ideally
positioned to select appropriate se-
quences of actions in a computationally
reasonable way.

Roughly, the predictor neurons
emit a signal that means ‘things are better
than expected’ (prediction error posi-
tive), ‘things are the same’ (prediction
error 0), or ‘things are worse than
expected’ (prediction error negative). A
simple mechanism for choosing actions is
readily apparent: Take actions correlated
with increased dopamine neuron activity
(positive prediction error), and avoid
actions correlated with decreased dopa-
mine neuron activity (negative prediction
error).

As simple as this mechanism sounds,
its action reproduces the strategies used

by humans and bees on simple decision-
making tasks. We see that the notion of
computational equivalence described earlier
is helpful. Using the prediction error in
this neural algorithm is computationally
equivalent to executing a form of dy-
namic programming. This connection
gives us a handle on what to expect from
systems that employ the prediction error
signal to select actions.

The Cost of Future Uncertainty
Encoded in Dopamine
Fluctuations?

The behavioral tasks that we have
addressed all involve uncertainty about
future rewards, and the cost of this
uncertainty to the organism. The game is
clear: We have a computational descrip-
tion of a signal that evaluates the state of
the organism and provides estimates of
the likelihood that one action will yield
more total future reward than another.
This signal is constructed and distributed
by homologous neural structures in the
brains of insects and primates. If this signal
is actually used by the organisms that
possess it, then we should be able to
predict their behavior on a variety of tasks
that involve estimating likely future
reward.

Leslie Real [Harder and Real,
1987] has examined the role of uncer-
tainty using bee foraging behavior. He
studied how the mean and variability of
nectar returns from flowers affects the
way bees decide to forage on flowers. An
artificial field of flowers with two flower
colors (blue and yellow) was used. Two
units of nectar were placed in all the blue
flowers, six units were placed in one third
of the yellow flowers, and zero units were
placed in the remaining two thirds of the
yellow flowers. Bees were released over
the enclosed field, and the fraction of
visits to each flower color was recorded.
Flower color was the only physical
feature that predicted the nectar reward.
Bees behave very much like humans on
similar tasks; they make about 85% of
their visits to blue flowers despite the
same mean return (in nectar) from the
more variable yellow flowers. This behav-
ior is called risk aversion [Harder and Real,
1987]. Real also tested the value of
uncertainty for the bees. He increased the
mean return on the yellow flowers while
holding the variance constant. When the
bees sampled indifferently from each
flower type (sampled 50% from each), he
recorded the amount of increase in the
mean return required to elicit this indiffer-
ence. This measures the value of the
variance (uncertainty) in units of nectar.

We equipped the temporal differ-
ence model with a simple visual system,
and used computational techniques to
construct a simulated field of blue and
yellow flowers on which the model bee
could forage. This computational experi-
ment was not a model of flight, but tested
the way in which the bee could use its
prediction error signal to choose its next
action. At each point in time the model
bee had two choices: (1) continue in the
current direction, or (2) change direc-
tions. The sign of the prediction error
selected which of these choices was more
likely: prediction error positive, continue
in same direction; prediction error nega-
tive, change to new random direction.

When presented with the reward
distributions described above, the virtual
bees behave just like the real bees and
sample the blue flowers (constant return)
on 73% to 85% of their landings. We
were also able to test the cost of
uncertainty using the virtual bees. The
model again captured the real bee behav-
ior. So why should bee foraging behavior
have anything to do with the human
decision making? The hint originates in
the fact that the dopamine neurons in
primates and the octopamine neurons in
the bee appear to be implementing a
similar computational strategy with ho-
mologous neural components. In addi-
tion, learning displayed by the monkeys
parallels the learning displayed by the
dopamine neurons. Therefore, we set out
to test whether the same action selection
mechanism described above would ac-
count for human behavior on decision
tasks analogous to those faced by the bees.

We gave humans a related task, but
instead used two buttons on a computer
screen (Fig. 7). The rewards associated
with the selection of each button varied
as a function of a short history of
selections. This is illustrated in the three
tasks shown in Figure 8-the reward from
button A and button B depends on the
fraction of previous selections made from
button A. The fraction is computed over
the last 30 selections. So the rewards
received vary depending on how one’s
selections are allocated to each alterna-
tive.

In designing the reward functions,
we introduced features in the rewards
that would cause the model to get stuck
in behaviors that were suboptimal, i.e.,
the model’s sensitivities to changing
reward can ‘‘blind’’ it to more profitable
strategies. Our intuition was that humans
would almost certainly behave differently
or at least with much more variability
than various incarnations of the model.
Our expectations were wrong in a

Fig. 6. Temporal credit assignment. Ac-
tions taken at one point in time can be
related in complicated ways to futures
consequences both good and bad. A
bug walks along a table, falls, and bumps
its head. Which of its previous actions
was most responsible for the bump? The
step through the barricade was certainly
important.
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number of informative ways. For ex-
ample, the humans act just like the bee
would have if the bee were capable of
executing the choice tasks given to the
humans. We suspect that although the
humans have more memory capacity and
more sophisticated ways to categorize
tasks, they appear to use the prediction
error signal in the same way as bees.

Task 1: Flat returns for all decision
strategies. Figure 8 (top) shows the
average results for the networks and
human subjects on a task where all
strategies give the same long-term re-
turns. Every allocation of choices yields
the same return (dotted line) over the 250
total selections allotted to this task. This
task is modified from one originally used
by Richard Herrnstein in experiments on
rational choicebehavior inhumans [Herrn-
stein, 1991]. Humans and model con-
verge quickly to a stable strategy, making
choices that tend to equalize returns from
each button. For both humans and
network, the mean allocation to button A
settled near the crossing point in the
reward functions with a slight central
tendency (tendency to play 50% from
each alternative). This central tendency
has been tested in experiments, is real,
and is predicted from the behavior of the
model. Our human results confirm Herrn-
stein’s results on a very similar task;
however, we should note that this is
exactly the behavior expected based on
the model. The model provides a plau-
sible mechanistic explanation for why
humans tend to stick at the crossing point
in the reward functions.

Task 2 and 3: Optimal strategy lies
on and off crossing point. In task 2
(Figure 8 middle & bottom), the attrac-
tion to the crossing point allowed 18 of
24 subjects to maximize their long-term
return; however, in task 3, the same
attraction to the crossing point blinds
humans to higher long-term returns. In
this latter task, over half (14 of 25) the
subjects converged to the crossing point
even though other, easy to discover
allocations yielded higher long-term re-
turns. The remaining 11 of 25 displayed a
mean of around 70% allocated to button
A. Choosing roughly 80% from button A
is close to optimal behavior. All the
networks converge to the crossing point.

Task 4 (not shown): No systematic
reward structure. In the presence of a
pseudo-random sequence of rewards,
both the networks and the humans play
almost exactly 50% from each button. In
this case, the numbers are striking:
network 0.498 1/2 0.007 (n519),
humans 0.501 1/2 0.002 (n519).

Computational Bridges Dopamine
Neuron Activity to Simple
Decision-Making

We have described at length the
reasons that we think dopamine systems
are in part responsible for distributing a
sophisticated evaluatory signal through-
out the nervous system. We have sug-
gested how and why we think that this
signal is a scalar prediction error in the
expected amount of future reward. More-
over, we have also argued that reward can
be a relatively complex quantity that
depends on many variables; however, it is
clear that successfully and consistently
obtaining reward confers a selective
advantage.

The findings described above high-
light a number of interesting issues. The
evolutionary conservation of both the
computational and neural mechanisms is
striking. Perhaps once the solution was

found (for the problems we considered),
there were no dramatically different
solutions that were better. Another strik-
ing result is the degree to which the
model predicts behavioral performance in
humans. It did not have to be this
straightforward. The computational model
explains the output of dopamine neurons
and was not engineered to explain choice
behavior on the decision tasks that we
examined.

This example illustrates how the
computational approach provides a frame-
work to link cellular and behavioral work
in an explanation of mental operation.
Another area of fertile computational
research is the study of development;
computational studies of development
are producing new lessons for thinking
about the connection between mind and
brain and offer an important perspective
on early experience and intervention.

Fig. 7. Simple decision task given to network and humans. A two choice experiment
given to the model and to 66 human subjects. The model made random transitions from
among the two choices, e.g. A, A, B, A, B, B, etc. These transitions induced fluctuations in
the prediction error signal d(t) based on the weights associated with each choice. As in the
bee model, the weights represent the predictions. At each step (transition), the value of
the prediction error d(t) determined which button was actually chosen through a
sigmoidal function Ps(d(t)).
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Development From a
Computational Perspective

We have already mentioned Tur-
ing’s monumental work on the theory of
computability. In 1938, Claude Shannon
showed how to implement Turing’s logic
with electrical switching elements. Shan-
non went further and invented informa-
tion theory, of which the basic unit is the
binary digit or bit, the amount of
information obtained in knowing which
of two states a switch is in (on or off,
corresponding to true or false). In 1943,

Warren McColloch and Walter Pitts
[McColloch and Pitts, 1943] applied
these two ideas–information and Turing’s
work–to the brain.

They suggested that since neurons
appear to be in one of two states, quiet or
firing, they were equivalent to logical
switches. They then showed how neu-
rons could be arranged in the brain to
make the brain a Universal Turing
Machine.

In 1958, Frank Rosenblatt at Cor-
nell [Rosenblatt, 1958] took the idea a
step further when he developed a brain-
style computer he called the perceptron.
Based loosely on the retina, Rosenblatt
trained his system to recognize letters by
changing the connections between units
during learning. Although Rosenblatt’s
model contained the seeds of a brain-style
approach to computing known today as
neural networks, his model was severely
limited in what it could learn, as Marvin
Minsky and Seymour Papert pointed out
in their 1969 book, Perceptrons [Minskey
and Papert, 1969].

For these and other reasons, neural
network research was largely dormant
until the mid-1980s. By 1985, a group of
researchers known as the Parallel Distrib-
uted Processing (PDP) research group
had achieved learning in several types of
multilayer networks, showing that direct
descendants of the perceptron could
overcome the limitations Minsky and
Papert had shown [Rumelhart and Mc-
Clelland, 1986]. Rosenblatt’s model had
been very simple, and Minsky and
Papert’s critique applied only to this
simple version of neural networks. The
publication of the PDP Research group’s
two-volume work in 1986 sparked an
explosion of interest in neural networks.
After years of hibernation, almost over-
night a new scientific discipline was
founded. Associations, conferences, jour-
nals, and academic departments emerged,
making the rise of brain-style computing
one of the most significant scientific
advances of that decade.

The resurgence of neural network
models has been especially revealing for
development. As we explore, computa-
tional studies of development are shifting
how we view the relationship between
developing cortex and learning, a shift in
perspective that is very much aligned
with recent experimental work in devel-
opmental neurobiology. In particular,
models of ‘‘self-organization’’ reveal how
complex structures can emerge through
the interaction between developing cor-
tex and temporal patterns of neural
activity reflecting environmental struc-
ture [Bienenstock et al., 1982; Miller et

al., 1989; Montague et al., 1991; Good-
hill et al., 1997]. These models suggest
that complex cortical structures do not
require a strong pre-specification, but
rather may emerge reliably through the
rich interaction between developmental
mechanisms and environmentally-de-
rived information (Fig. 9). As recent
work in developmental neurobiology
likewise suggests, this computational work
suggests that the traditional distinction
between learning and cortical maturation
no longer holds. The computational
perspective provides a means of character-
izing the significance of this interaction.
In particular, it suggests that activity-
dependent cortical development solves a
fundamental problem of learning (Figs.
9–11). We suggest that understanding
this learning problem from a computa-
tional perspective highlights the impor-
tance of early intervention for at-risk
populations. More generally, it suggests a
needed realignment between cognitive
and neural development and how matura-
tion and learning are related. Historically,
the study of cognitive development has
remained largely isolated from the study
of neural development. Despite their
relative independence, however, there
are important historical parallels, as we
explore.

Cognitive and Neural Development
Roger Sperry’s [1963] landmark

developmental work produced an influen-
tial view of brain development. Culminat-
ing in his ‘‘chemoaffinity hypothesis,’’
Sperry regarded neural development as a
process whereby neural connectivity was
determined in a molecular lock-and-key
fashion; axons were viewed as carrying
molecular addresses for particular target
sites. The wiring that resulted from such a
scheme was thought to delimit the
behavioral repertoire mediated by the
developed neural circuits. Sperry’s inter-
pretation of his work was even more
expansive; he believed it demonstrated
that developmental psychology had be-
come a part of neurobiology, thus
eliminating the notion that the acquisi-
tion of cognitive skills was a process of
learning. Although the work was exciting
in its potential scope and demystified a
number of preconceptions of the day, this
interpretation is now seen to be unneces-
sarily restrictive.

Surprisingly, a similar view also
dominated cognitive science at around
the same time. Developed independently
by the linguist Noam Chomsky [1965]
with very different kinds of evidence,
Chomsky too surmised that the neural
structures underlying complex skills

Fig. 8. Network and human perfor-
mance on Task 1, Task 2, Task 3. Aver-
ages for humans and network are
shown. Each graph plots the reward
received against the fraction of choices
allocated to button A. For humans, the
reward received was encoded as the
height of the central bar between the
buttons. The horizontal position of
the symbols (asterisk, diamond) encodes
the average allocation to button A, and
the vertical position encodes the aver-
age reward actually obtained over the
task (250 button presses). Subjects were
instructed to try to maximize their re-
turns over the course of the task.
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emerged through an intrinsic process of
maturation. Chomsky reached his conclu-
sions through the burgeoning field of
computer science, which provided him
with computer languages and a study of
their complexity. Out of this grew
computational learning theory, a math-
ematical treatment of learning centered
on the study of assessing the difficulty of
learning various classes of formal lan-
guages. In 1967, Mark Gold [Gold, 1967]
published a seminal paper in mathemati-
cal learning theory, which seemed to
demonstrate very pessimistic results against
learning. Essentially, Gold argued that
learning a language was possible only if
the learner brought very specific prior
knowledge to the problem. Otherwise,
learning is prohibitive-the problem is
simply too difficult without a lot of prior
knowledge.

In one of the intellectual tour de
forces of this century, Chomsky applied
these emerging ideas to human languages.
Transforming the field of linguistics from
a cataloguing endeavor to one concerned
with the deep structure common to all
human languages, Chomsky argued that
languages were too complex to be
learned in any meaningful sense. Chom-
sky’s arguments were not based simply on
intuition. They were bolstered by math-
ematical learning theory and psychologi-
cal studies revealing that children re-
ceived only limited feedback from parents
regarding the grammaticality of their
utterances [Brown, 1973]. Children, ar-
gued Chomsky, must come equipped
with innate knowledge of language in the
form of a universal grammar, a rule

system capable of generating all the
grammatical instances of human lan-
guage. Exposure to an environment
simply set parameters in this template to
the appropriate values for the particular
language confronting the child. Com-
bined, this led to the image of the
language system of the brain as a mental
organ or module, which unfolded analo-
gously to the development of any other
organ. In 1967, Eric Lenneberg [Lenne-
berg, 1967] brought the view of intrinsic
cortical maturation and language acquisi-
tion together in his now classic work,
Biological Foundations of Language. Subse-
quently, this developmental view has
spread to many other domains in cogni-
tive science.

Under the influence of this view,
the interaction between a child and his or
her environment was devalued. Since the
unfolding of cognitive skills was largely a
matter of the intrinsic biological matura-
tion of prespecified structures, as long as
certain minimal conditions were met,
such as nutritional ones, there would be
no effect on outcomes. As many of the
papers in this volume illustrate, however,
developmental research over the last
decade is giving rise to a markedly
different view. A new appreciation for
the progressive nature of development
[Purves et al., 1996] and its dependence
on environmentally-derived activity are
its hallmarks. In light of this new research,
the innate modules of Chomsky and their
intrinsic maturation seem highly problem-
atic and are coming under increasing
revision [Elman et al., 1996; Quartz and
Sejnowski, 1997]. Recall, however, that

the motivation for modules stemmed
from the results of mathematical learning
theory. It is important to emphasize this
key insight from mathematical learning
theory, which has become more forceful
in the decades since Gold’s work [For
review, see Quartz, 1993]. We can
illustrate this with an example. Suppose
we want to design a system to automati-
cally sort letters by recognizing hand-
written addresses. One way to do this
would be by ‘‘automated programming.’’
This technique would equip the com-
puter system with a powerful learning
algorithm and a large set of samples to
discover on its own how to categorize
handwriting into discrete letters and
digits. Unfortunately, such a system
would take prohibitively long to learn
because it does not have any prior
knowledge that the patterns are supposed
to be letters and digits. There are
arbitrarily many consistent ways of sort-
ing this data and the computer could
never know on its own which was the
right way. A more powerful system
would come equipped with built-in
knowledge about letters and digits, per-
haps as dynamic templates that it uses to
fit the data. Now the computer knows
what it is looking for and so imposes its
knowledge on the data to classify it. This
built-in knowledge is known as inductive
bias. In recent years, the prospect of
building general-purpose systems has
waned, as researchers realize that systems
must be tailored to specific domains for
engineering applications.

What computational studies of
learning reveal, then, is that the most

Fig. 9. Activity-dependent mechanisms and their influence on neural mappings. Activity-
dependent computational models use some form of long-term synaptic change to allow
patterns of neural activity to influence mappings from the sensory world to more central
structures like the cerebral cortex. These models are also thought to capture the kinds of
ongoing synaptic modification that takes place at connections between central neural
structures. The main idea in all these models is that neural activity in the source region drives
synaptic changes in the target region through the action of synaptic learning rules, i.e.,
mechanisms that influence the strength or lifetime of a synapse. One favorite mechanism is a
correlational learning rule—this rule strengthens synapses that experience correlated presynap-
tic and postsynaptic activity (spikes), and otherwise weakens them. A sufficiently weak synapse
is eventually removed. Such a mechanism extracts statistical correlations present in the neural
activity and represents them in the pattern of synaptic strengths. The model shown here
illustrates the refinement of a topographic mapping from a source layer into a three-
dimensional target layer. Initially, the connections originating from each point in the source
layer were made throughout the recipient target region with crude topography. This is
illustrated in the upper panel (‘‘Before training’’); a horizontal pattern of activity activates a
broad band of synaptic connections. In this particular model, a correlational learning rule
either stabilized or removed synaptic connections based on the correlation of presynaptic
activity and the ambient levels of the gas nitric oxide. The pattern of activation in the input
layer followed a simple rule-nearby neurons tended to fire together. This pattern of activation
together with the synaptic learning rule allowed the mapping to sharpen so that the same
horizontal stimulus pattern now activates a much more refined portion of the target region
(bottom). Active synapses are shown as light circles; the two-dimensional plot of the target is
taken from the slice as indicated. [Adapted from Montague et al., 1991.]
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basic problem of learning is not the
traditional one known as statistical infer-
ence [Geman et al., 1992]. Rather, it is
one of finding the efficient representa-
tions that make statistical inference pos-
sible at all. Further, how difficult it is to
learn something is really a question that
only makes sense relative to this back-
ground knowledge. Our previous ex-
ample shows that learning strategies
controlled by neurons in humans and
bees are sensitive to particular contingen-

cies through time; hence, they are very
much pre-equipped to deal with specific
kinds of learning. That is, they provide
background knowledge for the tasks they
influence.

Combining these results with the
emerging view of neural development
appears to lead to a paradox: How can we
reconcile the emerging view of develop-
ment with the requirement that learning
is possible only against a background of
appropriate representations? Where do

natural systems get this background
knowledge, the repertoire of representa-
tions that facilitate learning? If it is not
built-in according to Chomsky, where
is it?

Neural network models of develop-
ment and their analysis suggests that these
representations are constructed during
development though an interaction with
a information-rich environment. Tradi-
tional learning theory did not allow a
system to construct representations in this
manner. Instead, it limited learning to a
search through a pre-defined class of
representations. Allowing a system to
construct its representations as it learns
appears to be a powerful form of learning,
one with unique learning properties
[Quartz, 1993].

In other words, viewed from a
computational perspective, early develop-
ment is a period of representation con-
struction that makes the subsequent
acquisition of cognitive skills, such as
language, possible. One of the key
insights of computational studies [e.g.,
Miller et al., 1989; Berns et al., 1993;
Montague et al., 1991] is that complex
neural structures can emerge out of the
interaction among richly structured neu-
ral activity, developmental mechanisms,
the constraints imposed by subcortical
organization, the hierarchical organiza-
tion of cortex, and a basic common
circuitry that O’Leary [1990] refers to as
‘‘protocortex’’ (Figs. 10,11). A major
concern of computational studies is to
understand this interaction and to charac-
terize the algorithms that build the neural
structures underlying complex representa-
tions. Complementary to the study of
networks that build their representations
as they experience the world is the
increased interest in characterizing algo-
rithms capable of extracting more infor-
mation latent in the environment than
previous accounts believed existed.

Seeing early development as a
period of representation construction
making efficient learning possible makes
sense of another apparent paradox involv-
ing human development. The duration of
human development has often been seen
as little more than a period of increased
vulnerability. However, as a period of
environmentally-guided representation
construction, its duration suggests that it
is a powerful strategy for constructing the
complex representations underlying hu-
man cognitive skills. Extending the dura-
tion of representation construction maxi-
mizes the capacity of the world to
participate in this process of construction,
allowing increasingly powerful represen-
tations to emerge [Quartz, 1999].

Fig. 10. The shape of competent neural regions influences activity-dependent map
structure. One abstract correlational model of map formation, called the elastic net,
captures a number of features of the activity-dependent development of mappings that
form in the visual cortex. Synapses from retina 1 are black and those from retina 2 are
white. From an initially uniform mixture of each type of synapse (not shown), the black
striped pattern emerges under the influence of retinal activity and a correlational
mechanism for stabilizing synapses in the target. In this example, the model is used to
determine how information from two retinas competes for space in the visual cortex in a
fashion that mimics the formation of band-like eye-specific domains called ocular
dominance columns. Here, the elastic net model shows how the shape of the competent
target region influences the overall layout of the columns–innervation of a circular
cortical region gives no overall orientation to the layout of the ocular dominance columns
that form. If the same correlational model is presented with an ellipsoidal target region,
the columns line up with the short axis of the ellipse. This model illustrates how growth
factors and molecular markers which define the shape of the competent target regions
could influence overall features of the mapping that forms due to activity patterns in the
retinas, i.e., a classic example of how tightly genetic and environmental factors may
interact to build complex circuitry [Adapted from Goodhill et al., 1997].
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There is another reason why hu-
man cortical development is so pro-
tracted. Earlier we mentioned that artifi-
cial systems are typically made with a
great deal of tailored information regard-
ing the tasks they must perform. This
makes a system efficient, but it also makes
it inflexible. That is, a system designed for
a particular task is ill suited to a dynamic
environment in which demands are
constantly altering. Suppose the post
office adds letters to zip codes, for
example. In that case, our letter sorter
will fail and will have to be repro-
grammed by hand. Thus, protracted
human cortical development, while com-
ing at the expense of increased vulnerabil-
ity and parental investment, appears to be
both a powerful means of constructing
the representations underlying cognition
and a flexible strategy for dealing with a
dynamic environment. It appears there

are no other feasible means of obtaining
flexibility other than maximizing the
period of environmentally-guided repre-
sentation construction.

Computational studies of develop-
ment thus illustrate the consequences of
the breakdown between learning and
maturation, which the emerging view of
neural development suggests. This break-
down leads to a uniquely powerful and
flexible strategy for creating the represen-
tations underlying both cognitive skills
and efficient learning. Development, then,
is solving the fundamental problem facing
a cognitive system-how to obtain the
appropriate representations underlying
complex skills. Viewed from this perspec-
tive, development is more aptly described
as a special kind of learning, not statistical
inference per se but a prior period of
representation construction. Quartz and
Sejnowski [1997] call this representation

construction ‘‘constructive learning.’’ Un-
covering its nature and mechanisms is a
major research direction in computa-
tional neurobiology.

The Argument for Early
Intervention

Constructive learning puts a pre-
mium on the interaction between devel-
oping neural systems and a richly struc-
tured environment. Contrary to classical
arguments regarding the poverty of envi-
ronmental information, current computa-
tional research highlights the richness of
environmental structure. As brain re-
search has demonstrated, a reduction in
the complexity of the early environment
brings about a reduction in the complex-
ity of neural structures. The most likely
explanation now is that this deprivation
causes a failure to grow rather than the
failure to stabilize exuberant structures.

Fig. 11. A small number of parameters can define the entire layout of ocular dominance columns in macaque visual cortex. The actual
arrangement of ocular dominance columns from macaque cortex is shown at left (this computer image is adapted from LeVay et al. [1985]).
On the right is the result produced by the elastic net model. This example shows the interaction of three influences on the global layout of
the ocular dominance pattern that forms in the model: (1) spatially anisotropic correlations in the retinas, (2) presence of a foveal region
with a higher density of neural activity, and (3) shape of the competent target region (taken here as ellipsoidal). As used here, spatial
anisotropic correlations simply mean that the retinal neuron activity was correlated over longer distances in one direction than in the
orthogonal direction (in this case the ratio was 2:1). [Adapted from Goodhill et al., 1997.]
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Because early experience is literally a
form of environment-dependent learning
that builds the representations underlying
cognition and subsequent learning, depri-
vation places great risks on the future
prospect of cognitive skill acquisition and
learning in general. Without an appropri-
ate set of representations, subsequent
learning is impaired, although it remains
an outstanding research question to assess
the question of critical period phenom-
ena for this capacity. The recent results of
Eric Knudsen’s [1998] research on the
owl highlight the importance of early
experience as a constructor of representa-
tions facilitating learning later in life. The
optic tectum of barn owls contains a
multimodal map of space. In particular,
auditory-visual neurons in the optic
tectum associate particular values of
auditory spatial cues with locations in the
visual field. This association is accom-
plished through matching the tuning of
tectal neurons for interaural time differ-
ences with their visual receptive fields.
During development but not adulthood,
there is considerable plasticity in this
system, allowing for a wide range of
associations to be learned. When juvenile
animals are fitted with goggles that shift
the visual field, the resulting abnormal
associations are learned. Knudsen demon-
strated that the range of associations adult
owls could learn is greatly expanded in
those animals who had learned abnormal
associations during development.

This is a striking demonstration of
the role of early experience in construct-
ing the representations that facilitate later
learning. From a computational perspec-
tive it highlights the importance of
separating learning into distinct prob-
lems: learning as statistical inference and
the construction of an efficient set of
representations that make statistical infer-
ence possible at all. Further, Knudsen’s
results demonstrated that the capacity to
learn abnormal associations as an adult
remains even though the associations had
not been used for an extended period of
time. While generalizing from such
systems requires a great deal of circum-
spection, the lesson that early experience
is a time of representation construction
facilitating later learning and the acquisi-
tion of cognitive skills has important
implications for intervention. Foremost,
it suggests that the period of cortical
maturation be viewed as a special kind of
learning, one of ‘‘constructive learning’’
in which cognitive representations are
constructed under the influence of envi-
ronmental information. It also suggests
that later remediation strategies that
attempt to replicate the environmental

input of early experience may be more
effective than ones based on traditional
methods of learning as statistical infer-
ence. For example, a promising response
to language learning impairment is based
on acoustically modifying speech to
resemble that of the early language
environment. Modifying the acoustic
properties of speech appears to facilitate
the re-construction of cortical representa-
tions underlying the discrimination of
phonetic elements [Merzenich et al.,
1996]. Such an approach takes advantage
of the plastic properties of cortex to
address the fundamental representational
issues underlying language learning im-
pairment. Understanding this central stage
of cognitive skill acquisition as a period of
representation construction thus has far-
reaching implications for both how we
view early experience and how we
approach the challenges facing at risk
populations. j
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