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Abstract 

Introduction 

Some forms of synaptic plasticity depend on the temporal 
coincidence of presynaptic activiiy and postsynaptic response. 
This requirement is consistent with the Hebbian, or correlational, 
type of learning rule used in many neural network models. 
Recent evidence suggests that synaptic plasticity may depend in 
pan on the production of a membrane permeant-diffusible signal 
so that spatial volume may also be involved in correlational 
learning rules. This latter form of synaptic change has been called 
volume learning. In both Hebbian and volume learning rules, 
interaction among synaptic inputs depends on  the degree of 
coincidence of the inputs and is otherwise insensitive to theh 
exact temporal order. Conditioning experiments and 
psychophysical studies have shown, however, that most animals 
are highly sensitive to the temporal order of the sensory inputs. 
Although these experiments assay the behavior of the entire 
animal or perceptual system, they raise the possibility that 
nervous systems may he sensitive to temporally ordered events at 
many spatial and temporal scales. We suggest here the existence 
of a new class of learning rule, called apredictfve Hebbian 
learning rule, that is sensitive to the temporal ordering of 
synaptic inputs. We show how this predictive learning rule could 
act at single synaptic connections and through diffuse 
neuromodulatory systems. 

Most biologically feasible theories of how experience-dependent changes 
take place in real neuronal networks use some variant of the notion that 
the efficacy or "strength of a synaptic connection from one cell to 
another can be modikied on the basis of its history. In this theoretical 
work it is generally assumed that modikications of synaptic efficacy, by 
acting over a large population of synapses, can account for interesting 
forms of learning and memory. This theoretical assumption prevails 
primarily because of its intuitive appeal, its accessibility to analysis, some 
provocative relations to biological data, and a lack of good alternatives. 

Recent work demonstrates that simple abstract learning algorithms, if 
given appropriately coded input, can produce complicated mappings 
from input to output. These efforts include networks that learn to 
pronounce written text (Sejnowski and Rosenberg 1987), play master 
level backgammon (Tesauro 1994), and recognize handwritten characters 
(Le Cun et al. 1990). As pointed out by Crick (1989) and others, many 
of these efforts are not good models of the vertebrate brain; however, 
they can be quite valuable for identifying the informational requirements 
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involved in specific tasks. Moreover, they point out some of the 
computational constraints to which brains are subject. An awareness of 
the computational constraints involved in a particular problem can guide 
theories that explain how real brains are constructed (Churchland and 
Sejnowski 1992). 

Although abstract networks have provided some insight into the 
topdown constraints that nervous systems face, these approaches are of 
limited use in gaining insight into how various problems have been 
solved by real brains. For example, the actual learning mechanisms that 
are used in biological systems also satisfy additional constraints that arise 
from the known properties of neurons and synapses. In this paper we 
focus on learning rules that are supported by biological data and consider 
the strengths and weaknesses of these rules by measuring them against 
both computational and biological constraints. Taking this dual approach, 
we show that computational concerns applicable to the behavior and 
survival of the animal can work hand in hand with biologically feasible 
synaptic mechanisms to explain and predict experimental data. 

Correlational Theoretical accounts of how neural activity actually changes synaptic 
Learning function typically rely on a local correlational learning rule to model 
Rules--Learning synaptic plasticity. A correlational learning rule, often called a Hebbian 
Driven by Temporal learning rule, uses the correlation between presynaptic activity and 

Coincidence postsynaptic response to drive changes in synaptic efficacy (Fig. 1 )  
(Hertz et al. 1991; Churchland and Sejnowski 1992). One simple 
expression of a Hebbian learning rule is 

= v ( t l d t )  (1) 

where, at time t, w(t) is a connection strength (weight), x(t) is a 
measure of presynaptic activity, H t )  is a measure of postsynaptic activity 
(e.g., firing rate or probability of firing), and is a fixed learning rate. 

This kind of learning rule is called local because the signals sutficient 
for changing synaptic efficacy are assumed to be generated locally at 
each synaptic contact. One form of this learning rule was initially 
proposed by Donald Hebb in 1949 (Hebb 1949). Subsequent theoretical 
and computational efforts have exploited Hebb's idea and used 
correlational learning rules to account successfully for aspects of map 
formation and self-organization of visual and somatosensory cortex (van 
der Malsburg 1973; van der Malsburg and Willshaw 1977; Montague et 
al. 1991). For example, various computational schemes employing 
Hebbian learning rules have accounted for the formation of cortical 
receptive fields (Bienenstock et al. 1982; Linsker 1986, 1988), ocular 
dominance columns (Miller et al. 1989), orientation maps (van der 
Malsburg 1973; Obermayer et al. 1990; Miller 1994), directional 
selectivity (Sereno and Sereno 1991), and disparity tuning (Berns et al. 
1993). Correlational leaming rules also provide a reasonable theoretical 
framework for synaptic plasticity observed in the hippocampus (Kelso et 
al. 1986; Bliss and Lynch 1988), cerebellum (Ito 1986, 1989), and 
neocortex (Kirkwood et al. 1993). 

Below, we review some of the biological evidence from the vertebrate 
nervous system that supports this simple learning rule as a descriptor of 
synaptic change during both activify-dependent development and 
synaptic modification in the adult. We subsequently suggest that changes 
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Figure 1: Hebbian Learning. (A) Inputs x, provide excitatory drive to a neuron 
through connection strengths or "weights". Inputs x, and x ,  are sufficiently corre- 
lated to permit cooperation along a section of dendrite (shaded area) through voltage 
or second messengers. Through an expression llke equation 1, the weights of these 
connections will be increased: lnputx, is not acme during this coincident activation 
of x, and x,. The weiaht of x.'s connection could be decreased bv a depression rule - - .  
that depressed all synaptic contacts that were not sufficiently correlated with the 
postsynaptic response (shaded area). Without such a rule, weights can grow wlthout 
bound. To prevent this, a homeostatic constraint that limits the total synaptic strength 
supported by the recipient neuron is typically used. This is just one possible way to 
normalize the weights. The issue of how and why normalization is biologically 
reasonable is critical. Normalization can give stability to the Hebb rule, but, de- 
pending on its implementation, ~t can cause the weight vector to converge to d ~ f -  
ferent values. In the presenceof additional constraints (see text) for the learning rule, 
a Hebb rule will extract the principal component from the correlations in the input 
patterns that occur and the vector of weights will come to point in the direction of 
the first principle component of the "data" generated by the input activities (Oja 
1982). The pattern of weights that develops can be analyzed in terms of the cova- 
riance matrix of the input activities (see text). (6) Graph of input activity along two 
inputs, x, and x,. Each Doint is a pair of activity levels for the two i n~u t s  in (A). The 
inbuts cllster albng a skaight line', indicat~ng a'strong correlation.   he approximate 
direction of the principal component is along this line. 

in this description are required b y  bo th  experimental and theoretical 
work. The primary change is predicated o n  the need for  brain 
mechanisms sensitive t o  temporally ordered input, a prob lem that has 
most l ikely been solved b y  brains across a range o f  spatiotemporal scales. 
W e  marshal arguments and review detailed evidence in suppoa o f  this 
suggestion and po in t  out  those aspects o f  the proposed changes that are 
important for  understanding learning and memory in the vertebrate 
brain. 

Developmental In the vertebrate nervous system, aBerent axons f ind their appropriate 
Evidence for Hebbian target structures through interactions w i t h  local environmental cues and 

Learning Rules target-derived information (Bonhoeffer and Huf f  1985; Dodd  and Jessel 
1988; Stuermer 1988; Harris 1989; Hellher e t  al. 1990; O'leary e t  al. 
1990; Placzek e t  al. 1990; Suetevan 1990). After reaching target 
structures, there is strong evidence that activity-dependent processes are 
cri t ical in determining the development of mappings between peripheral 
sensory structures and their more centrally located target structures, 
including the optic tectum, thalamus, and cerebral cortex (Hubel and 
Wiesel 1965, 1970; Hubel e t  al. 1977; Meyer 1982; Stryker and Harris 
1986; Suetevan et al. 1988). Specific mappings arise in these targets 
because temporal contiguity in axonal f i r ing is somehow translated i n to  
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spatial contiguity of synaptic contacts. Hence, activity-dependent 
processes are involved at least with the initial self-organization of 
mappings in the tectum, thalamus, and cortex. 

After normal developmental periods, activity-dependent processes are 
also involved in the reorganization of sensory mappings in the adult. For 
example, the adult cerebral cortex has been shown to be surprisingly 
plastic (for review, see Kaas 1991; Merzenich and Sameshima 1993) 
following changes to the environment such as retinal damage (Kaas et al. 
1990; Gilbert and Wiesel 1992), changes in limb innervation (Merzenich 
et al. 1983, 1984; Wall et al. 1986; Clark et al. 1988), artificial scotomas 
(Pettet and Gilbert 1992), and other dramatic perturbations of sensory 
input (Clark et al. 1988; Garraghty et al. 1988; Garraghty and Kaas 1992) 
The plasticity observed during both activity-dependent development and 
map reorganization is consistent with the hypothesis that changes in 
synaptic efficacy are controlled by Hebbian learning rules (Reiter and 
Stryker 1988; Bear et al. 1990; Singer 1990; Rauschecker 1991; 
Merzenich and Sameshima 1993; Schlagger et al. 1993). 

Collectively, these data suggest that (1) dynamic synaptic changes can 
occur throughout adulthood, (2) there is a strong relationship between 
the rules controlling synaptic change during development and in the 
adult, and (3) the learning rules appear to be Hebbian. 

Cellular and Synaptic In the vertebrate, the existence of Hebbian-like learning rules is 
Evidence for Hebbian supported further by detailed experimental evidence from work on 
Learning Rules excitatory glutamatergic synapses. Research over the last 20 years, has 

demonstrated that in the adult nervous system, long-term increases (Bliss 
and Lomo 1973; Kirkwood et al. 1993) and decreases (Ito 1986, 1989; 
Artola et al. 1990; Sejnowski et al. 1990; Dudek and Bear 1992; Mulkey 
and Malenka 1992) in synaptic effkacy can occur under appropriate 
conditions. 

One form of long-term increase in synaptic efficacy is called long-term 
potentiation or LTP. The induction of LTP depends on correlated 
presynaptic activity and postsynaptic depolarization and requires an 
increase in postsynaptic calcium ion concentration (Dolphin et al. 1982; 
Collingridge and Bliss 1993; Davies et al. 1989; Malenka et al. 1989). 
Although Hebb (1949) never mentioned decreases in synaptic efficacy 
resulting from a lack of coincidence in presynaptic activity and 
postsynaptic response, such an extension to the original postulate was 
made by Stent (1973). This idea also finds support in the vertebrate 
nervous system. 

One form of long-term decrease in synaptic efficacy is called long-term 
depression or LTD. In the hippocampus, the induction of homosynaptic 
LTD requires presynaptic activity without a coincident "response" from 
the dendrite (Dudek and Bear 1992; Mulkey and Malenka 1992), that is, 
the presynaptic terminal and the postsynaptic dendrite are not active at 
the same time. The response alluded to above is probably an increase in 
postsynaptic calcium levels subsequent to presynaptic release of 
neurotransmitter (Mulkey and Malenka 1992). Other forms of synaptic 
depression have been described in the neocortex (Artola et al. 1990; 
Artola and Singer 1993). 
In a number of systems, the induction of LTP depends on activation of 

the N-methyl-maspartate (NMDA) glutamate receptor (for review, see 
Bliss and Lynch 1988; Nicoll et al. 1988). Because the NMDA receptor 
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provides a pathway for postsynaptic increases in calcium, its function 
inlluences both LTP and LTD. Interestingly, activation of the NMDA 
receptor is also one key event in the activity-dependent segregation of 
axonal terminals that occurs during the initial development of sensory 
mappings described above (Cline et al. 1987; Kleinschmidt et al. 1987; 
Scherer and Udin 1989; Bear et al. 1990; Cline and Constantine-Paton 
1990; Simon et al. 1992). Thus, the NMDA receptor plays a critical role 
in both activity-dependent development and synaptic change in the adult. 

NMDA Receptor as a Experiments have demonstrated that NMDA-dependent LTP can he 
Hebbian Coincidence viewed as Hebbian: Sufficient correlation in presynaptic activity and 
Detector postsynaptic depolarization leads to an increase in the efficacy of the 

synapse (Wigstrom and Gustafsson 1985; Kelso et al. 1986; Malinow and 
Miller 1986). Current flow through the NMDA receptor can occur only 
in the presence of bound L-glutamate and a sufficiently depolarized 
membrane, that is, the receptor is ligand and voltage gated. This dual 
control of the NMDA receptor implicates the receptor itself as one 
substrate for detecting the correlation in presynaptic activity nor glut am ate 
release) and postsynaptic response (postsynaptic depolarization). 

Taken together, the data on activity-dependent development of cortical 
maps and NMDA-dependent LTP suggest that a Hebhian learning rule is a 
reasonable theoretical starting point for modeling activity-dependent 
development and adult learning. Figure 1 shows a concrete example of a 
Hebbian learning rule. 

Computational 
Properties of 
Hebbian Rules 

Hebbian learning rules are unsuperuised learning rules in that they lack 
a teaching signal that could supervise learning at each synaptic 
connection in a detailed manner, although, as discussed in a later section, 
they can be extended to include an additional reinforcement component. 
Although networks using Hebbian rules have inputs and produce outputs, 
there is no precise error information that instructs the network about 
whether an output was correct or not. Instead, Hehbian rules extract 
particular correlations or regularities among the presynaptic inputs 
through an averaging process, and the results are represented in the 
pattern of weights in the network (Hertz et al. 1991; Churchland and 
Sejnowski 1992). Through averaging, only those features or regularities 
that arc redundant are extracted. The kinds of regularities to which 
Hebbian rules are sensitive depends on the network architecture. In this 
discussion, we let x or x(t) represent the vector of input fibers x = 
[x,(t), xZ(t). . . ., x,,(t)] at time t, and E[x] represents the vector of 
expected values of the components of x (see Fig. 1). 

Biologically feasible correlational models depend on the assumption 
that learning (weight changes) at synaptic connections is slow relative to 
the time required to present a number of input patterns sufBcient to 
represent the statistics of the input. This assumption permits the 
particular learning rule in question to be analyzed in terms of a 
normalized correlation matrix of the input activities, called the 
covariance matrix, defined as (COV,~) : [x - E(x)][x - E(x)]~ (Linsker 
1986, 1988; Miller et al. 1989). As d~scussed below, this assumption can 
allow extensive analysis of the learning rule. In some models, learning 
(weight changes) takes place as each input pattern is presented (e.g., 
von der Malshurg 1973). This latter assumption means that if the 
network contains nonlinearities, the order of presentation of the input 
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patterns can critically influence the final weight patterns that result; 
that is, the network does not necessarily extract the redundancies in 
the input activity. 

Figure 1 shows the simplest form of a Hebbian learning rule. In this 
diagram we consider the response of one linear neuron in a target region 
whose output at time t is 

where ( )  represents a time average sufficiently large so that condition 1 
above is met. 

The expression C., = (x+) dekines the correlation matrix for the input 
vector x and is equivalent 

Using the Hebbian learning rule in equation 1 and assuming that the 
weight changes are slow relative to the time over which the input 
patterns are presented (case 1 above), the change in a synaptic weight 
w, can he represented as (the dependence on time is suppressed) 

where ( ) represents a time average sufficiently large so that condition 1 
above is met. 

The expression C,, = (x,x,) defines the correlation matrix for the input 
vector x and is equivalent to the covariance matrix when the individual 
components of x have zero means. The correlation matrix of the input 
activities is a symmetric matrix and therefore has real eigenvalues and a 
complete set of orthonormal eigenvectors. The possibility of analyzing 
the Hebbian learning rule given by equation 1 in terms of the 
eigenvectors of the covariance matrix has made this learning algorithm 
attractive. In the absence of other constraints. the eieenvectors of the 
covariance matrix represent synaptic weight patterns that can develop 
independently of one another and the eigenvector associated with the 
larg&t eigenvalue will determine the fin2 weight pattern that develops. 
This way of viewing the development of weight patterns 
(activity-dependent development) makes contact with standard methods 
of analysis used in many fields such as statistics, physics, and applied 
mathematics. 

There are a number of problems with the simple learning rule in 
equation 1. One problem is that this rule allows the synaptic weights to 
grow without bound. To prevent synaptic weights from growing without 
bound, a kind of homeostatic constraint that limits the total synaptic 
strength supported by the recipient neuron is typically used. This is an 
important issue because without this extra constraint, a simple Hebbian 
learning rule is not stable. 

Below, we consider three proposals for limiting the growth of synaptic 
weights under a correlational learning rule. We measure each proposal 
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against the nature of the information required to limit the total synaptic 
strength. For clarity, we assume that a synaptic weight represents the 
strength of a single synaptic connection. 

WEIGHT DECAY One proposal made by Oja (1982) suggested that a local decay of the 
(LOCAL CONSTRAINT) synaptic weight is srnkient to give a correlational learning rule stability. 

He considered the following rule (again the dependence on time is 
suppressed) 

At each update of the synaptic weight, the decay of the weight is 
proportional to the square of the postsynaptic response. This rule 
requires a form of heterosynaptic long-term depression, in that the 
second, negative term depends only on postsynaptic activity. Oja (1982) 
has shown that this learning rule will extract the first principal 
component of the input correlation matrix. In a general sense, the first 
principal component represents the dominant input pattern (Hertz et al. 
1991). The important biological aspect of this rule is that weight decay is 
reasonably viewed as a local event that could take place at single 
synapses or groups of cooperating synapses. Other correlational schemes 
have been used to extract all the principal components of the covariance 
matrix (Sanger 1989), but they have not been offered a. feasible 
biological models. 

CUPPING OR SATURATION Another local method to limit total synaptic weight involves simply 

(LOCAL CONSTRMNT) clipping the weight at maximum and minimum values. This method has 
been used in a number of ditferent correlational schemes (e.g., Von der 
Malsburg and Willshaw 1976; Bienenstock et al. 1982; Edelman and 
Reeke 1982; Linsker 1986; Gally et al. 1990; Montague et al. 1991) 

where O,,, and O,,,, are respectively pre- and postsynaptic modification 
thresholds (Sejnowski 1977). Cases where both (x, - O,,) and ( y -  O,,,,) 
are negative are usually ignored in biological models to prevent this 
condition from causing an increase in synaptic strengths contrary to 
experimental findings. Variations on this rule assume nonlinear functions 
for the postsynaptic term and sliding thresholds that depend nonlinearly 
on the postsynaptic activity (Bienenstock et al. 1982; Artola and Singer 
1993). These types of schemes are intuitively acceptable from a 
biological perspective; however, allowing synaptic weights to saturate 
influences the final state of the weight vector by introducing a sensitive 
dependency on initial conditions. MacKay and Miller (1990) have 
provided a good analysis of this situation and have shown that the 
eigenvector associated with the largest eigenvalue does not always 
determine the final pattern of weights under learning rules similar to 
equation 5. The value of this form of learning rule is that only local 
information is needed to prevent uncontrolled growth of synaptic 
weights. 
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WEIGHT N o m u z A n O N  Weight normalization refers to a procedure whereby some measure of 
(GLOBAL CONSTRAINT) the total synaptic weight onto the recipient neuron is used to limit the 

growth of the synaptic weights. In multiplicative weight normalization 
(see von der Malshurg 1973), each synaptic weight onto a neuron is 
divided by the sum or sum of squares of every other weight onto this 
neuron. This division is carried out after each update of the weights. This 
form of normalization rescales the synaptic weights continuously when 
they are updated. After updating the weights with Awi computed 
according to equation 1 

W e  weights are then rescaled according to 

In subtractive weight normalization, a similar procedure is followed but 
the weights are rescaled according to 

m E o m n o N A L  CONCERNS There are other ways to normalize the synaptic weights, hut they all 
require that each synapse onto the neuron have access to the weight of 
every other synapse on the neuron. Current experimental evidence on 
synaptic plasticity suggests that local postsynaptic events are sufficient to 
change the efficacy of a synapse. If true, then how will an inactive 
synapse communicate its weight so that the total synaptic weight can be 
computed for the sake of a currently active synapse? Moreover, if one 
considers the kinds of intracellular signals that could actually 
communicate the total synaptic strength onto a neuron to every atferent 
synapse on the neuron, then the scheme runs into the problem of 
"time-stamping" each total so that delays in collecting the total synaptic 
weight do not interfere with appropriate normalization. There are ways 
around these problems; however, if we are to make the assumption that a 
weight is equivalent to the strength of an individual synaptic connection, 
then normalization on a cell by cell basis runs into dficulties. 

Analysis and simulation of these computational constraints on Hebbian 
rules has provided insight into some of the virtues and limitations of 
learning rules that are driven by coincidence detection. Recent evidence 
concerning one biological mechanism of coincidence detection suggests 
that the above formulations of a correlational learning rule may have 
omitted a number of important properties. 

L E A R N I N G  IMEMoRY 
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Retrograde There is evidence for changes in presynaptic terminals following the 
Communication and induction of long-term potentiation at Schatfer collaterals in area CAI of 

Volume Sign& in the hippocampus (Dolphin et al. 1982; Bekkers and Stevens 1990; - 
synaptic Malinow and Tsien 1990). Because the trigger for LTP induction is 
Transmission postsynaptic, there must be some mechanism that permits retrograde 

communication hack to the overlying presynaptic terminal (Bliss and 
Collingridge 1993). One candidate mechanism for this retrograde 
communication is the production, diffusion, and action of nitric oxide in 
response to glutamatergic activity. 

The membrane permeant gas nitric oxide (NO), produced in the 
vertebrate central nervous system subsequent to NMDA receptor 
stimulation, can iniluence both synaptic plasticity (Bohme et al. 1991; 
Haley et al. 1991; O'Dell et al. 1991; Schuman and Madison 1991) and 
transmission (O'Dell et al. 1991; Friedlander et al. 1992; Manzoni et al. 
1992; Montague et al. 1992, 1994a; Kato et al. 1993). Recent 
expcrimcnts havc suggcstcd an analogous role for the membrane 
permeant gas carbon monoxide (CO) (Stevens and Wang 1993; Zhuo et 
al. 1993a,h). 

In 1991, four groups demonstrated that inhibition of the synthetic 
enzyme for NO, nitric oxide synthase (NOS), blocks the induction of 
NMDA- dependent LTP in the mammalian hippocampus (Bohme et al. 
1991; Haley et al. 1991; O'Dell et al. 1991; Schuman and Madison 1991). 
Although the meaning of these results is not undisputed (Williams et al. 
l993), the findings suggest that NO production is one necessary step in 
LTP induction. This possibility is strengthened significantly by evidence 
demonstrating that the correlation of presynaptic activity and elevated 
levels of NO is sufficient to potentiate transmission only at recently 
active axonal terminals (Arancio et al. 1993; Zhuo et al. 1993a,h). In 
these experiments the inactive terminals are unaffected. The amount of 
potentiation that results from this pairing of activity and NO cannot he 
enhanced further by a tetanizing stimulus that is known to induce LTP 
(Zhuo ct al. 1993a). 

Taken together, the above results suggest that NO may play the role of 
conjunction detector for axonal terminals that are active coincident with 
high levels of the gas. NO is a nonpolar gas that moves readily through 
cell membranes. This physicochemical property suggests that NO would 
not he restricted to its site of production hut could move rapidly 
throughout a surrounding local volume of neural tissue. The interior of 
any nearby synapse can therefore feel the effects of the local NO 
concentration whether or not its own presynaptic or postsynaptic 
elements have been active. This is a critical possibility because in the 
absence of specialized compartmentalization mechanisms for NO, this 
signal would act throughout a local volume of neural tissue (Fig. 2). 
Synaptic plasticity will operate in a local diffusion-defined domain 
because NO will simply accumulate in local regions containing multiple 
NO sources. 

Volume Learning A synaptic plasticity mechanism employing NO or some other diffusible 
substance for the modulation of synaptic function would permit plasticity 
to operate beyond the boundaries of conventional anatomically defined 
synapses to iniluence plasticity throughout a local volume of neural 
tissue. This novel form of plasticity has been termed volume learning 
because synaptic plasticity operates through a transient diffusion-defined 
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Figure 2: Volume learning. A short-lived membrane permeant substance is re- 
leased at active synapses  he substance d~ffuses away from its sources to define a 
local domain (shaded zone). Temporal fluctuations in presynaptic firing patterns on 
inputs x, are thereby transformed into spatiotemporal fluctuat~ons in substance con- 
centration. S~ec i f ic~tv  In learninz is ach~eved bv wstulatina that svnaoses that are , . - , ,  
acme when ;he conCentration oithis compound is high are strengthened. Synapses 
that fire when the concentration of substance is low are weakened. The strength of 
a glven synapse is influenced by the firing patterns and three-dimensional locations 
of neighboring synapses whether or not these synapses are made onto the same 
neuron. Associations among inputs x, can develop in small volumes of tissue. An 
influence on synaptic weights In the local volume will occur if the substance tran- 
siently influences synaptic gain or 1s a d~rect and necessary signal for longer term 
synaptic plasticity Th~s mechanism would Interact with other s~gnals known to 
influence synaptic interactions on neurons through the postsynaptic compartment, 
e.g., changes in membrane voltage and second messenger production. The volume 
signal would need to reflect the local activity of glutamatergic synapses; however, as 
long as the ~roduction occurred subsequent to presvnaotic activitv, the substance 
could be produced locally from the dendrrtes of other cells or locally elicited from 
other oresvnaotic terminals. Note that this mechanwn allows Dostsvnaotic reswnses 
to be'integrated in part in the extracellular space 

domain and permits associations among aEerent inputs t o  form in small 
volumes o f  neural tissue (Gally e t  al. 1990; Montague et al. 1991, 1993; 
Montague et  al. 1993b) (Fig. 4, below). 

The case for N O  as a membrane permeant substance involved in 
synaptic plasticity is strengthened b y  other experimental observations 
and computational work. For example, the synthetic enzyme NOS is  
calcium dependent (Bredt and Snyder 1992), and assays for N O  
production show that i t  is made in bo th  the cortex and hippocampus 
subsequent t o  stimulation o f  NMDA receptors (Friedlander e t  al. 1992; 
Montague et  al. 1994a). Computational wo rk  has shown that a model  of 
synaptic plasticity that uses the covariance o f  presynaptic activity and a 
postsynaptically produced rapidly diffusible signal can account for  the 
development of sensory mappings in the cerebral cortex and thalamus 
(Montague et  al. 1991). 

C O  was mentioned earlier as another possible membrane permeant 
signaling molecule. C O  is a very stable molecule and wou ld  enjoy a 
much  longer biological half-life than NO; therefore, a n  associative 
mechanism uti l iz ing C O  wou ld  act over longer t ime scales than NO. 
Additionally, C O  is not  known  t o  b e  made in response t o  NMDA 
stimulation and i ts use as a signaling molecule is energetically 
unfavorable (Edelman and Gally 1992). Hence, if C O  is  actually used in 
some k i nd  o f  correlational learning rule in the brain, then the ru le  
depends o n  events different f rom those known  t o  influence 
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Computational 
Consequences of 
Volume Learning 

NMDA-dependent synaptic plasticity. A correlational mechanism using 
CO would extract more efficiently statistical regularities that exist at 
longer times scales than those regularities reported through NO 
production and diffusion. 

Independent of the identity of the rapid volume signal, there are a 
number of consequences that follow for any learning algorithms based on 
a volume learning mechanism. A simple version of a volume learning rule 
was proposed previously to account for the activity-dependent 
development of sensory mappings in the vertebrate thalamus and cortex 
and one form of synaptic plasticity in the adult state (Gally et al. 1990; 
Montague et al. 1991): 

where AMt) is the change in the "weight" or synaptic efficacy of a 
connection, q is a constant controlling rate of change of synaptic efficacy, 
x(t) is a measure of presynaptic activity, and 0,- is a threshold that 
determines whether a terminal is active at time t. T,, is a threshold, 
dependent on the activity of the presynaptic terminal, which determines 
the direction of synaptic change. The postsynaptic factor, formerly y in 
equation 1, is now dependent on the substance concentration p(r,t) at 
time t located at position r. 

The substance concentration evolves in time and space according to 

The first term on the rigbt side of this equation governs the diffusion of 
the substance, whereas the second and third terms represent the sinks 
and sources of the substance. The constant K controls the rate of 
exponential decay, whereas the production rate of substance Ip(r,t)] at 
location r and time t depends on the synaptic weights and patterns of 
input activity in the vicinity of r. largescale computer simulations have 
demonstrated that a learning rule like equation 9, when acting against a 
background of axonal growth, can account for the self-organization of 
whisker barrels, the refinement of topographic mappings, formation of 
reciprocal connectivity between cortical regions sharing correlated input, 
and the formation of ocular dominance columns (Montague et al. 1991). 

SPECIFICITY IN VOLUME Specificity in synaptic modification in a volume learning rule is 
LEARNING maintained by postulating differential effects on active and inactive 

presynaptic terminals (Gally et al. 1990; Montague et al. 1991). This 
theoretical requirement is supported by experimental evidence showing 
that NO differentially affects active and inactive presynaptic terminals 
through activation of soluble guanylate cyclase (Zhuo et al. 1993a,b). 
Also, a form of "synaptic recruitment" has been observed in tissue slices 
from mammalian hippocampus and cerebral cortex, where potentiation 
of synaptic contacts spreads from the site of induction only to active 
presynaptic terminals throughout a local region (Kossel et al. 1990; 
Schuman and Madison 1991: also see Bonhoeffer et al. 1989). This latter 
physiological effect is consistent with the production of a diffusible 
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volume signal that potentiates only active synaptic contacts and does not 
potentiate or depress inactive contacts. 

STABILITY IN VOLUME Using equation 9, weights can be prevented from growing without bound 
LEARNING by clipping as described previously or through an appropriate balance of 

competing activity patterns. This kind of volume learning rule can be 
overwhelmed by overactive inputs because the threshold T,,, does not 
change with activity levels in the vicinity. Hence, this rule is reasonably 
thought of as a setpoint model where the thresholds for presynaptic 
activity and substance levels necessary for synaptic change do not adjust 
to the ambient conditions. It is likely that this aspect of this volume 
learning rule is biologically incorrect and a better way to express this 
learning rule is in its covariance version 

Here, X r , t )  represents a running average of p(r,t) in the vicinity of the 
synapse. Equation 11 will adapt to ambient levels of the substance and 
thus adapt the learning mechanism to the average amount of activity in a 
region. This volume learning rule would produce qualitative changes in 
synaptic strengths according to Table 1. 

A REPRESENTATIONAL ISSUE: If the interaction among presynaptic terminals is mediated in part by a 
HOW MAPPINGS ~ C T I O N  transient diffusible signal produced by nearby active synapses, then 
UNDER RAPID VO1.UME lateral interactions can take place throughout a diffusion-defined domain. 
EFFECTS The size and shape of such a domain will depend on patterns of neural 

activity impinging on a region as well as physical factors such as the 
geometrical arrangement of synapses in three dimensions, the synthetic 
and catabolic rates for the substance, and the potential action of other 
unidentified barriers or sinks for the substance. The numerous possible 
implications of a variable distance over which synapses interact are not 
known. Although it has been demonstrated that a volume learning rule 
can direct the appropriate activity-dependent map formation (Montague 
et al. 1991, 1993a,b), the implications of a variable lateral interaction 
scale are crucial and unexnlored in detail. 

The robustness of a mechanism that permits associations between 
aeren t  inputs to develop in small volumes of tissue is not known. Rapid 

Table 1: Volume learning rule 

r t  - r ,  > 7 p(r,t) - p(r,t) < - T 
Active synaptic element increase decrease 
Inactive synaptic element decrease no change 

Th~s continaencv table shows the direction of chanae of svna~tic weiehts under a 
volume learning rule. If nitric oxide is the volume;~gnal,'then experrmental data 
suggest that the learn~ng rule I" the lower left portion of the table IS incorrect. This 
rule decreases synaptic weights of inactive connections that experience suprathresh- 
old levels of nitric oxide. Usina these learning rules. an active svnamc contact must 
corre ale w~th loral art "11, or I t ,  me ghl n 111 be decreased lo 0 Th s latter cona t~on 
ar ws hrrasr  ~o depress~on r~ e, are Inc ~ n r d  n rhe lahk one for ueprers,ng 
inactive terminals and one for depressing active terminals. These rules force C O ~ D -  
eration throughout a local diffus~on-defhed domain because they do not allow'a 
terminal to be appropriately silent. In this fashion, a local volume of tissue could 
only map information about one variable. 
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volume signals place a premium on the three-dimensional distribution of 
synaptic contacts throughout a local volume because these contacts 
represent potential sources of substance in response to neural activity. 
An emphasis is therefore implicitly placed on the dendritic morphology 
of the recipient cells in a region. This latter point gains in importance 
because NO can also intluence local blood flow (ladecola 1993) and 
neurotransmitter release (O'Dell et al. 1991; Zhuo et al. 1993a,b; 
Montague et al. 1994a). It has long been recognized that electrotonic and 
second messenger communication within branched dendritic structures 
is critically dependent on specific dendritic morphology. Rapid volume 
effects add an extra dimension to these interactions and may represent 
another means through which specific dendritic structure performs 
important and identifiable computational functions. 

In Figure 3 we provide a simple example of how rapid volume signals 
can intluence the manner in which information is represented in a 
cortical map in which volume signals operate. In this example we assume 
for simplicity that pyramidal cells are the only recipient cell type in the 
region. In Figure 3A, input 1 and input 2 are located one space constant 
from the soma. I€ we consider local signals confined to the dendrites, 
then these inputs will interact primarily through depolarization at the 
level of the soma. This assumes that local signals in the dendrites do not 
interact and that the voltage changes are integrated primarily at the 
soma. Changing the orientation of these dendrites, as shown in Figure 3B, 
does not change these statements; that is, for signals confined to the 
postsynaptic compartment, the notion of proximity is not changed by 
reorienting the dendrite. In the case where an active input (input 1 )  can 
elicit a rapid volume signal (shaded circular zone), the position of the 
dendrite is critical. Because of the capacity for synapses to interact 
directly through the tissue, proximity through the tissue space does not 
correspond to proximity along dendrites. Accordingly, the exact 
three-dimensional distribution of synapses throughout a region 
determines the nature of the feed-forward mapping into the region from 
the point of view of the volume signals. Hence, the distribution of 
feed-forward synapses can he sampled using different dendritic 
structures, so that a given mapping can simultaneously represent several 
different transformations depending on the dendritic structure of the 
recipient neurons. 

From Temporal Hebbian learning rules are correlational in the sense that the changes in 
Coincidence to synaptic strengths represent the associations between inputs. There are 
Temporal other relationships that are important to learn about events, such as the 
Order-The Goal of temporal order of the inputs. Hebbian learning rules are symmetric in 

Prediction time: They are sensitive only to the degree of temporal coincidence of 
inputs and not the temporal order (Fig. 4). For example, a Hebhian rule 
is not sensitive to whether input A follows input B; rather, it is sensitive 
only to the absolute separation in time of inputs A and B and is therefore 
symmetric in time. This lack of sensitivity to temporal order means that 
alone, a Hebhian rule would not permit the development of the 
predictive relationships that occur between stimuli during a classical or 
instrumental conditioning task (MacKintosh 1974, 1983). Conditioning 
experiments have shown that through learning, sensory stimuli can come 
to act as predictors of reward, punishment, and other salient stimuli 
(Dickinson 1980). One important constraint that has emerged from this 
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Figure 3: Sampling input activity with volume signals and postsynaptic signals. 
Simplified example illustrating some differences between signaling directly through 
a volume of tlssue and confining signals to the postsynaptic compartment. (A.6) 
Fibers 1 and 2 represent inputs that partlclpate In a feed-forward mapping into a 
region of cortex. Input 1 (0) is not firing, whereas input 2 (m) ~sfir ing and producing 
a modulatory substance. These two inputs are assumed to be the same electrotonic 
distanced from the soma. This illustration shows how a volume signal would influ- 
ence the representation of information I" th~s mapping. From the point of view of 
signals restricted to the dendritic compartment, the prox~m~ty of these synaptic inputs 
is not changed by simply moving the dendrite or reposit~oning one input at an 
equivalent electrotonic distance on another dendrite (6). Because rapid volume 
signals confer the capacity for synapses to interact directly through the tissue, prox- 
imity through the tlssue space does not correspond to proximity along dendrites. (6) 
The repositioned input 1 IS ~nfluenced by the volume signal elicited by input 2 
although the capacity for interactions strictly through the dendr~t~c comDartment has 
not changed. Clearly, the fact that the signal can pass readily through membranes is 
important for understanding its function because the extracellular mace mav be verv , , 
small in any given region-of neuropil. A compound like NO (diffusion constant 
=2.60 cm21sec) would diffuse a root mean sauare distance of 10 um In about 
6.4 msec. This calculat~on for the root mean square distance NO diffusion assumes 
an unb~ased random walk in three dimensions. In one dimenston, the average 
squared distance traversed by a diffusing molecule with diffusion coefficient D is 
<d2> =2Dt, where d is distance, t is time, D is the diffusion constant. In three 
dimensions we have <r2> = <x2 + yZ+ z2> = <xZ> + <y2> + <z2> = 2Dt 
+2Dt+2Dt=6Dt, where r IS the vector (x,y,z). In the mammalian cerebral cortex, 
synaptic densities have been estimated to be -1 bilhon svna~seslmm~, which vields . . 
>4000 synapses In a sphere of radius 10 pm. A volume signal using a low-molec- 
ular-weight membrane permeant molecule can allow a small number of synaptic 
contacts to tell many other synaptic contacts in a region about the statistics of their 
activity. This form of local "broadcast" does not require the use of axons. 

L E A R N I N G  E lMEMoRy 
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Figure 4: Detection of temooral order through a su~oression of olasticihi. x ,  and x, - . .  . . ,  A 

represent two inputs into a common region or onto a common cell (see Fig. 3). A 
correlational rule is sensitive onlv to the absolute se~aration in time (At=t.-t.l of 

A ,  

x ,  and x, .  (A) x ,  occurs before x,; (8) their order I; reversed. The two cases are 
equivalent for a correlational rule. Suppose that input x, el~c~ts some signal that is 
necessary for learn~ng but that also inactivates learn~ng for some short period of time 
when ~t rises above a threshold (shaded area). The order of occurrence of x ,  and x, 
now becomes important, x ,  must be active prior to x ,  or else no changes In synaptic 
weights can occur. This simple scheme represents one of many possible ways to 
express an unsupelv~sed local predictive learning rule (see text). 

work is that this form of learning is asymmetric in time; that is, sensory 
events consistently preceding presentation of rewarding stimuli come to 
act as predictors of the reward, whereas sensory events following the 
presentation of reward do not come to act as predictors of the reward. 
Although these kinds of experiments assay the behavior of the entire 
animal, they highlight the importance of the causal structure of the world 
for the learning displayed by the animal. 

Any system that uses predictions of its most likely next state and the 
most likely next state of the world ha.  information to prepare itself for 
the future given its current inputs and plans for taking action. In this 
sense, prediction can be viewed as a computational goal of a system 
that must operate in an uncertain and variable environment. For example, 
a system that could predict how the sensory input would change as a 
consequence of making a movement would be of great benefit in 
planning actions (Jordan and Rumelhart 1992) A prediction can be 
compared with the actual changes following a movement and the error 
used to improve the prediction. A similar approach can be taken to 
predicting the locations of targets for eye movements. There are 
probably a variety of predictive systems in the brain. Given that 
prediction is an important goal, it is reasonable to expect the existence 
of predictive mechanisms in vertebrate nervous systems at many spatial 
and temporal scales. 

Predictive Learning Previous theoretical and modeling work has focused on the need for 
Rules-Learning predictive or anticipatory mechanisms for learning to explain animal 
Driven by Temporal behavior and reinforcement systems (Rescorla and Wagner 1972; Sutton 
Order and Barto 1981; KLopf 1982). These kinds of models have used 

neuron-like units and adaptive weights to reproduce various aspects of 
classically and instrumentally conditioned behaviors. Other work has 
carefully considered the neurobiological aspects of predictive models in 
the context of classical conditioning (Hawkins and Kandel 1984; Moore 
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et al. 1986; Gluck and Thompson 1987). In all of this work, some 
sensitivity to the temporal order of inputs is built into the structure of 
the network and the rules for modifying synaptic strengths. 

Because predictive mechanisms are probably represented in the 
vertebrate brain at many spatial and temporal scales, it is reasonable to 
inquire about the nature of these mechanisms at both large and small 
scales. In the following sections we present arguments and modeling 
approaches that address predictive mechanisms in the vertebrate brain at 
the scale of single synapses and at the scale of global signals available to 
widespread recipient regions. We first review data from the behavior of 
glutamatergic synapses suggesting that a predictive learning rule may take 
place at single glutamatergic connections. In the succeeding section we 
review evidence for predictive mechanisms at global levels of processing. 

A Local Predictive We focus here on data related to glutamatergic transmission in the 
Learning mammalian hippocampus. In a hippocampal slice preparation, Malenka 
R u l e o u l d  Synaptic and colleagues (Huang et al. 1992) have shown that weak synaptic 
Change at activity (30 Hz, 0.25 sec) along a synaptic pathway will transiently block 
Glutamatergic the subsequent capacity to induce LTP along that pathway. This result 
Synapses be has been contirmed by Zorumski and colleagues (Izumi et al. 1992). The 
Predictive? latter group have also extended these findings and have shown that this 

block of LTP induction is itself blocked by agents that inhibit NO 
production or chelate NO in the extracellular space. These results 
suggest an important theoretical possibility, provide important 
mechanistic clues, and construct links to the volume learning framework 
outlined in thc preceding discussion. We first consider additional data 
pertinent to these findings and subsequently present the computational 
consequences of a mechanism that allows prior synaptic activity to block 
the subsequent capacity to modulate synaptic strength. 

NO is known to be involved in a variety of feedback mechanisms at 
different spatiotemporal scales: (1) NO inhibits NOS activity directly 
(Klatt et al. 1992); (2) NO greatly diminishes calcium fluxes through the 
NMDA receptor (Izumi et al. 1992; Manzoni et al. 1992) through action 
at a site distinct from the glutamate-binding site (Lei et al. 1992; Lipton 
et al. 1993); and (3) by coupling glutamatergic activity to blood flow 
changes, NO production causes the inilux of oxyhemoglobin into regions 
of neural tissue that were active previously and therefore have 
diminished oxygen tension. The oxyhemoglobin would tend to lose its 
oxygen and would be available to chelate kee NO. 

These forms of negative feedback that limit NO production in a region 
of neural tissue might have been expected simply on the grounds that 
because NO has so many potential influences, it must be tightly 
controlled. Whereas no definitive conclusions can be reached with these 
experimental results, they do suggest that there may be a substrate for 
negative feedback onto the NMDA receptor following events that are 
sufficient to cause calcium fluxes through the receptor. As explained 
below, this biological possibility has important computational 
consequences. 

One important possibility is that this inhibition of the NMDA receptor 
may represent a blockade of the subsequent ability of synapses in the 
local volume to change their strengths, that is, inhibition of plasticity 
following events sufficient to engender long-term changes in synaptic 
strengths. Although the time scales are not quite appropriate, this 
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interpretation is supported by the above data from glutamatergic 
synapses in the hippocampus (Huang et al. 1992; Izumi et al. 1992). In 
situations where NO production participates in synaptic plasticity, the 
negative feedback to NOS has similar consequences. 

Independent of the exact role played by NO production, these data 
collectively suggest that previously active synaptic contacts may be the 
only eligible candidates for potentiation, that is, only those pre- and 
postsynaptic elements with a decaying trace of activity (e.g., calcium) 
would be eligible for long-term modification. We extend this possibility 
to include both increases and decreases in synaptic strength. The simple 
invalidation of all  local connections at the moment that an elicited 
postsynaptic signal is suiikiently high forces the system to "look 
backward in time for some trace of activity at the synapses that were 
active previously. Hence, we have a substrate for a plasticity mechanism 
that is sensitive to the temporal order of inputs and may operate at single 
glutamatergic connections in an unsupervised manner (Fig. 4 ) .  

This mechanism may be viewed as a local predictive learning rule: 
Those synaptic elements (pre- o r  post.) whose activity consistently 
precedes (predicts) epochs of sufficiently synchronous activity in a 
local volume of tissue will he potentiated Those synaptic elements 
whose activityprecedes (predicts) epochs of little or no synchronous 
activily in a locale are depressed 

Aw(t) = v ( t  - h)[w(r,t) - P(r,f)l (12) 

This possibility provides a substrate for an unsupervised learning rule 
that can act predictively. As before, suprathreshold fluctuations in 
p(r,t)-Nr,t) are necessary for changes in synaptic strength; however, 
now only prior activity is relevant. In this formulation, h represents a 
fixed time-interval so that equation 12 changes weights by comparing 
preceding presynaptic activity x(t- h) with current postsynaptic 
responses p ( r , t ) K r , t ) .  We have cast this rule as a volume learning rule 
primarily because of convenience: It allows a signal to be passed rapidly 
throughout a local domain. The signal would not have to be a rapidly 
diffusible signal but could represent fluctuations of any kind of elicited 
postsynaptic response made available to presynaptic terminals. The 
weights that develop under such a learning nrle act aspredictions of 
future epochs of correlated activity in the local region In the 
succeeding section we show how a second predictive learning rule 
acting within a neural system can produce synaptic weights that 
represent predictions of future reinforcement. 

One point to emphasize about this learning rule is that there must be 
some time delay (h) between the onset of activity in the presynaptic 
terminal and the time that the fluctuation in substance levels actually 
selects the direction and magnitude of the weight changes. A threshold 
for the size of fluctuations p(r , t)-xr, t)  is one way to enforce such a 
delay. This delay would then depend on how fast both p and ji can 
change. Note that allowing rapid changes in ii could prevent learning 
altogether We mention these possibilities to emphasize that the time 
constant associated p is a critical parameter and might actually be 
adaptable (Fig. 5). 

There are other differences between this predictive learning rule and 
the covariance rule presented in Table 1. 
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Figure 5: Two scenarios for a local predictive rule. Two neurons, 1 and 2, are 
connected to one another through connectlon we~ghts W, and W,, respect~vely. 
Additional input to neuron 1 is provided through connection we~ght W,,. When 
neuron 2 fires, it elicits a local signal (shaded area) that inactivates learn~ng (long- 
term synaptic weight changes) for a short period. The natureof this local signal is leh 
unspecified. Only those synaptlc contacts that were actlve just prior to the produc- 
tion of th~s signal are eligible for weight changes. As discussed in the text, this 
scheme forces the system to "look back" in time for synaptic contacts e l i~ ib le  for 
long-term weight changes. The learning would be predictive because on& those 
synaptic contacts whose activity consistently precedes activitv in the terminal from 
neuron 2 can be potentiated. Asynaptic contact whoseactivity is not followed by the 
signal elicited from 2 would be depressed (see Table 1). In th~s illustration. we 
assume that neuron 1 can elicit th~s &nal because its weight is sufficiently large (for 
details, see text). (A) Neuron 2 is se~arated from neuron 1 bv a d~stance suffic~entlv 
large that the signal (shaded area) only influences the input 10'1. If this input 
actwty in 2, then W,, could be potentiated. (6) The input connections to 1 (W,,) as 
well as the output connectlon from 1 (W,) are subiect to the signal elicited bv 2. In 
this case, both W,, and W, are subject to increase if activity In these connections 
precedes the signal elicited by W, (shaded area); otherwise, their activitv w ~ l l  cause 
them to depress ~f this activity isnot followed by activity in 2 

A n  appropriately silent terminal can remain in a region because 
potentiat ion and depression only occur for active terminals; that is, a 
terminal must b e  active t o  "assay" whether it correlates w i t h  activity in a 
local domain, thus al lowing more than one variable t o  b e  mapped in a 
single local domain. Note also that this rule does no t  potentiate synapses 
that become active after epochs o f  correlated activity, possibly suggesting 
that modification o f  single glutamatergic connections is sensitive t o  
temporally ordered events (Huang et  al 1992; l zum i  e t  al. 1992). 

INFLUENCE OF LOCAL One reason that developmental experiments may appear t o  b e  consistent 
PREDICT~VE LEARNING RULES w i t h  Hebbian mechanisms of plasticity is that they represent long-term 

ON DEVELOPING SYSTEMS t ime averages. These could mask the fact that the terminals that segregate 
together d o  so because they are predict ing the same local events through 
time. For example, consider the case of t w o  axonal terminals, A and B, in 

L E A R N I N G  IMEMO'  
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a common region of neural tissue. Suppose that (1) activity in A 
precedes the activity in B, (2) activity in B precedes the activity in A, or 
(3) both 1 and 2 hold. One would label any of these three conditions as 
supporting the statement that A and B were correlated in their activity. 
Under appropriate conditions, a synaptic learning rule sensitive to 
temporal order could strengthen or stabilize terminal A when its activity 
was followed by activity in B and similarly strengthen terminal B when 
its activity was followed by activity in A. In this fashion, although the 
learning rule is strictly predictive, the stabilization or strengthening of 
synaptic contacts over longer developmental epochs would thus appear 
to be consistent with a correlational rule acting at the individual synaptic 
contacts. 

During activity-dependent phases of neural development, this local 
predictive rule also would tend to incorporate the causal structure of the 
inputs even at the level of single receptive fields: One set of inputs could 
predict future activity in another set of inputs onto a single neuron or 
group of neurons. For a visually responsive neuron, this would allow 
input in one region of the receptive field to predict activity in another 
portion of the receptive field. For a cell receiving inputs from multiple 
modalities, one modality could predict the future onset of inputs carrying 
information from another modality (Montague et al. 1993a; Pouget et al. 
1993). 

Predictive Learning Thus far we have considered only unsupervised learning rule& but there 
through Diffuse are numerous other signals important for adaptive behavior and learning 
Ascending Systems that could be considered superuised, if arising from outside the brain, or 

monitored, if the reinforcement signal is internally generated 
(Churchland and Sejnowski 1992). For example, attentional and 
motivational states (Mountcastle et al. 1981; Cole and Robbins 1992) and 
rewards (Wise 1982) are all important components of learning and 
memory. Information about these kinds of influences is transmitted to 
target structures in part through the diffuse ascending systems of axons 
originating in small nuclei in the midbrain and basal forebrain (e.g., 
Cooper et al. 1970). The axons of these nuclei innervate large expanses 
of the cortical mantle and other structures and deliver to their targets 
various neurotransmitters including dopamine, norepinephrine, serotonin, 
and acetylcholine. Invertebrates have analogous neurons that have been 
shown to be involved in reinforcement and reward processing (Hammer 
1991). 

Behavioral and physiological work has shown that these diffuse systems 
can influence ongoing neural activity (Kaczmarek and Levitan 1987: 
Foote et al. 1991), memory (Damasio et al. 1985; Tranel and Damasio 
1985; Goldman-Rakic et al. 1990; Decker and McCiaugh 1991), and 
action choice (e.g., Bernheimer et al. 1973). Some of the same diffuse 
systems are also known to be required for the normal development of 
the response properties of cerebral cortical neurons. For example, 
removal of acetylcholine and norepinephrine disrupts normal ocular 
dominance plasticity (Bear and Singer 1986; Rauschecker 1991) and 
dramatically alters the rules for dendritic development in the 
somatotopic maps of rat cerebral cortex (Loeh et al. 1987). The question 
naturally arises as to how and why the same signals are used during 
development, learning, and behavioral control. 
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PERMISSIVE MODELS There are a number of models of reinforcement learning that explicitly 
or implicitly appeal to one of the diffuse systems to deliver information 
about rewards to target structures. In a number of these models, the 
output of the diffuse system is used as a gating signal that defines epochs 
during which correlational learning can occur (Hawkins and Kandel 
1984; Gluck and Thompson 1987; Rauschecker 1991). These models can 
be expressed as 

where r(t) represents the output of a diffuse system that reports on 
reward to its target structures. This particular formulation of permissive 
gating would allow a system to backward-condition if r simply reported 
the occurrence and magnitude of a rewarding stimulus (Fig. 6). In 
general, backward conditioning does not occur; therefore, this rule is an 
incomplete description of bow information about rcinforcement should 
influence synaptic change. 

Interestingly, experimental data support a coincidence rule for the 
influence that the d a s e  system outputs exert on plasticity. If the 
temporal order effects are to be taken into account at the synaptic level, 
then the gating model in equation 13 can be sensibly modified by a more 
detailed consideration of the nature of the information that a diffuse 
system could be expected to deliver to its target structures. It is possible 
that these diffuse systems are not simply reporting the occurrence and 

rewards. 
eye movements, 
ete. 

I3 

Figure 6: (See facing page for legend.) 

L E A R N I N G  IMEMoRy 
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magnitude of rewarding and salient events in the wo r l d  hut, rather, 
information about predicted rewards and events. 

PREDICTIVE MODELS: Recent research o n  computational models has suggested that the dBuse 

MAKING PREDrcnoNs IN ascending systems cou ld  be  report ing information about predictions of 

THE REAL BRAIN future st imuli  simultaneously t o  widespread targets (Quartz e t  al. 1992; 

Figure 6: Making and using scalar pred~ctions in a real brain. (A) Maklng predic- 
tions with distributed representations. An activat~on Dattern in one of the illustrated 
cortical areas influences the (scalar) output of P through an effective weight, e.g., W, 
from area 1 This weight is termed effective because the high convergence from area 
1 onto P throws away topographically coded information forcing the input to P from 
area 1 to represent a scalar drive to P. In th~s sense, the anatomical convergence 
alone performs an important computational function converting a pattern of activity 
into a scalar drive to P. If an activation pattern in area 1 consistently preceded an eye 
mo\emenr reportcu d ung fct, tnen tnc OL~PJI of P ~ O L  d frf l rct approx matr y the 
temporal ddference berueen the dr i e  tu I ' t n r u ~ ~ h  H, and tne drwe to P t h ro~ rh  tne 
W,. The more these two Inputs to Pdiffer, the larger thechange in Ps output. S~milar 
values along these two Inputs cause little or no change in the output of P. Because 
P responds to differences in input through time, its output represents a comparison 
through time of W, and W,. This comparison permlts the weight W, to act as a 
predrction of the effective drive that will be delivered along r(t) in the future. P's 
output w ~ l l  reflect a crude error In that prediction, i.e., the degree to which there is 
a mismatch between input through W, and future input along r(t). A simple means 
to modify the weights W, and W, so that they become better predictors of future 
external events IS to change them according to a s~mple correlational rule (see text). 
Using predictions from d~stributed representations, 8 illustrates how 6(t) and V(t) 
change with changing patterns of activation in the two converging areas (area 1 and 
area 2). For this example, pattern 1 is restr~cted to area 1 and influences the output 
of neuron P through its effective we~ght W, =0.9. Pattern 2 is similarly defined and 
influences P through an effect~ve weight W,=0.2. There IS also a reward pathway 
with weight equal to 0.5. We assume that these weights have already been set by 
some learning process as descr~bed in the text. This example considers how switch- 
Ing between two d~str~buted patterns ~nfluences the output of P. The times during 
which each pattern or the reward pathway is active are ind~cated: W, on (solid lines) 
= pattern 1 active, W, on (broken line) = pattern 2 actlve, and r(t) on reward on. 
Each Input pathway is off unless otherwise indicated. Each Input takes the value 1 
when it is active and 0 when it is inactive. At cycle 0, pattern 1 is active and remains 
so untll cycle 26 Note that during this per~od that 6(t) decays to 0 while V(t) builds 
to 0.9 (the value of the weight W,). At cycle 26, pattern 2 becomes actweand causes 
a slight increase in A(t). At cycle 27, pattern 1 becomes inactive and pattern 2 
remains active, thus completing the sw~tch from pattern 1 to pattern 2. This switch 
is accompan~ed by a large negative deflect~on In A(t). In this exam~le. we assume 
that decrease in the output of  delivers less neuromodulator to its targets. Under this 
assumption, switching from pattern 1 to pattern 2 makes ~t less likelv that the ou t~u t  
connections from neurons partic~pating in pattern 2 will cause their target cells to 
fire. This output could be connecttons to motor output or to other cortical areas (see 
A, above). Hence, the weights W, and W, store information related to pred~ct~ons 
made by the inputs to neuron P. These weights subsequently influence learning 
through the~r Influence on the output of neuron P. As pattern 2 remains active, 6(t) 
decays back to 0 and V(t) decreases from W, (0.9) to its steady-state value W, (0.2). 
At cycle 100, pattern 2 goes off and pattern 1 comes on, resulting in a posltlve 
deflection in A(t). This switch would bias the output connections of neurons partlc- 
ipating in pattern 2 and permit them to drive their target neurons. The first peak in 
A(t) is the result of the sw~tch to pattern 1, and the second peak is the result of the 
onset of the reward pathway r(0. The negative deflect~on In A(t) at cycle 123 is 
caused by the offset of the reward pathway. (h=0.4). 
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Montague et al. 1993a, 1994b; Pouget et al. 1993). These biological 
models are related to more abstract predictive models that have been 
developed and applied to engineering control problems and data from 
classical conditioning experiments (Sutton and Barto 1981, 1987, 1989; 
Moore et al. 1986; Sutton 1988). 

The proposal for how predictions could be made in a real brain is 
outlined in Figure 6 (also see Montague et al. 1993a). In figure 6, a small 
subcortical nucleus, labeled P, receives highly convergent input from 
both cortical representations and inputs carrying information about 
rewarding or otherwise salient events in the world. The cells in this 
nucleus are assumed to respond transiently to their net excitatory input, 
that is, compute the change in activity, or an approximation to the 
temporal derivative. For this discussion we will represent this derivative 
as a dserence between the ongoing activity and a running average of the 
activity 

where V(t) is the net input to the cell atfime t, including the 
unconditional reward stimulus r(t), and V(t) is a running average 
represented by: 

where A is a constant that determines the distance into the past over 
which the activity is averaged. As A approaches 0, the average reaches 
farther into the past. As A approaches 1, the averaging interval becomes 
short, and the output of P closely approximates the net input V(t) at 
time t. Combining equations 14 and 15, we have 

The o u p u t  of P reflects a (scaled) temporal difference between the 
current net input and the previous running average of the net input 

Plasticity of the weights from the cortex onto P and within the cortical 
layers is assumed to follow a simple correlational rule 

This rule thus retains a "gating" influence of the output of the diffuse 
system; however, the output G(t) is not simply the magnitude of the 
rewarding stimulus but instead represents a particular comparison of the 
net input through time. The net weight converging onto P from the 
cortex, for example, W, in Figure 6A, can act as a prediction of the 
amount of reward r(t). 



THE PREDICTIVE BRAIN 

When a rewarding stimulus is first encountered, it increases the output 
of P he_cause at that moment, the output 6(t) will be proportional to 
r ( t )+V( t -  1)) where P ( t )  is the total net input to P not contributed 
by r(t). As the actual delivery of information about the reward rises and 
falls back to baseline, the running average q t )  will follow slowly (Fig. 
6B). During learning, the weights are changed according to equation 17 
until the running average of the input V(t) from the cortex correctly 
predicts delivery of the reinforcement, so that 6(t)= 0. The capacity for 
V(t) to do this clearly depends on a number of factors including the 
value of A and the nature and time course of the rewarding events. 
Following learning, the output of P remains at zero (or at a constant level 
of firing if there is a spontaneous level of background activity); any 
change in the output of P is then a measure of the unexpected reward 
and represents a failure in the prediction of future reward. Alternatively, 
the output of P can he used to predict the likely reward value of a novel 
sensory stimulus hawd on previous learning with similar stimuli. 

In the learning rule expressed by equation 17, the output of P chooses 
the direction of learning at its targets because it is asigned quantity. The 
sign is interpreted as an increase in weight if V(t) - V(t) - 1 >T 
(increased neur~modulator release at the target) and a decrease in 
weight if V(t) - V(t)- 1> - T (decreased neuromodulator release at the 
target) for some threshold T. In this sense, the weights onto P act as 
predictions of the (scalar) value of r(t) and the output of P could be 
said to represent a prediction error. The simple correlational rule that 
acts at the targets of the diffuse axons thus permits these predictions 
errors to drive learning. There are a number of subtleties in this 
formulation that have been discussed in an engineering context (Sutton 
and Barto 1981; Sutton et al. 1987). Although the foregoing discussion 
omits the subtleties of how "on.lineX predictions can he used in a 
learning rule, it does give the general character of the information that 
ditfuse systems of axons can deliver to their targets. 

A MECHANlSllC As formulated, the above scenario for making predictions about future 
C O N S ~ I N T  SUGGESTED BY reinforcement would permit the reinforcement pathway r(t) to predict 
ANIMAL CONDITIONING the onset of input from the cortical areas; this is, this scheme would 
DATA permit backward conditioning under some circumstances. Under almost 

all normal circumstances, animals will not hackward-condition. 
Consequently, we propose that the onset of the reinforcement pathway 
inhibits future plasticity for some period of time. This assumption forces 
the system to use previously active inputs as the predictions of reward in 
a manner analogous to our previous proposal for single glutamatergic 
connections. Under this assumption, backward conditioning will not 
occur because only those events that precede the input along r(t) are 
eligible for synaptic change. For example, if r(t) was driven by an eye 
movement, the only synapses eligible for long-term modification are 
those whose activity consistently precedes the eye movement. This 
requirement establishes the eligibility for synaptic modification and does 
not alter the construction and use of the predictions outlined above. 

The cortical activity patterns that consistently predict the increases of 
r(t) in the world will thus develop weights onto P that act to discount 
the iniluence that the subsequent increase in r(t) has on the output of P. 
This framework has been applied to activity-dependent development and 
registration of mappings in the vertebrate nervous system (Quartz et al. 
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