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Summary

All choices are economic decisions, and this is true
because mobile organisms run on batteries. For them
the clock is always ticking and their battery draining
so every moment represents a choice of how to invest
a bit of energy. From this perspective, all choices —
those made and those not made — engender costs and
yield variable future returns. There is no more funda-
mental stricture for an organism than to behave so as
to recharge their batteries; consequently, each mo-
ment of existence is attended by the need to value that
moment and its near-term future quickly and accurate-
ly. The central issue of neuroeconomics is valuation —
the way the brain values literally everything from in-
ternal mental states to experienced time (the neuro-
science part), and why it should do so one way and
not another (the normative economics part). All these
valuations have now begun to be probed in experi-
ments by pairing quantitative behavioral and compu-
tational modeling with neuroimaging or neurophysio-
logical experiments.

KEY WORDS: computational psychiatry, neuroeconomics, trust
games, ultimatum games, valuation.

Introduction

All productive scientific disciplines expand their borders
by colliding with the limitations of their past. One typical
scenario is to break old boundaries — some important
experimental result or theoretical argument, formerly
thought to be sacrosanct, is wrecked by a new empirical
finding or a more revealing mathematical model. But dis-
ciplines can also advance by fusing together two sepa-
rate intellectual traditions.

Such is the case of the recent rise of an area called neu-
roeconomics (1-5). What is neuroeconomics and why
should neuroscientists be interested in its central ques-
tions?
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Neuroeconomic approaches to reward processing

Webster’'s New Millennium™ Dictionary of English de-
fines neuroeconomics as “the study of the brain in mak-
ing economic decisions, esp. to build a biological model
of decision-making in economic environments”. This
same dictionary account of the word gives its birth date
as the year 2002. The question on many scientists’
minds, especially those interested in how any nervous
system makes a decision, is this: just how different is
neuroeconomics from the behavioral and neuroscience
research that has been going on for the past 50 years?
Well, in terms of the issues raised, it is not different, but
in terms of its focus and outlook, it is indeed opening up
new areas of inquiry. From the neuroscience perspec-
tive, neuroeconomics stands on the shoulders of a
wealth of behavioral and neural evidence derived from
creatures ranging from fruit flies to humans. However,
many issues in decision making and its neural and com-
putational underpinnings, while not uniquely human,
take a certain form in humans that is not always directly
comparable with model systems, like those of rodents
and fruit flies. Also, as alluded to, much of the work tak-
ing place in neuroeconomics has natural connections
with computational neuroscience and, through those
connections, with practical applications in psychiatry,
neurology, and beyond. Lastly, it is altogether possible
that the term neuroeconomics is unnecessarily limiting,
and that neuroscientists should think of this area as “de-
cision neuroscience”, in the same manner that they nat-
urally accept the term “molecular neuroscience”.

Efficiency and the reward-harvesting problem

There are two natural neuroeconomics. The first — let us
call it neuroeconomics | — addresses the way that neu-
ral tissue is built, sustains itself through time, and
processes information efficiently. Neuroeconomics Il, on
the other hand, concerns itself with the behavioral algo-
rithms running on such neural tissue. This review focus-
es on neuroeconomics Il, but begins by highlighting
some important unanswered issues that arise in neuroe-
conomics |, the most important being the efficient use of
energy.

Modern-day computing devices generate an enormous
amount of wasted heat, devoting only a small fraction of
their thermal degrees of freedom to the computing itself.
The wasted heat derives from many sources, but main-
ly from a design luxury not available to any evolved bio-
logical computer, namely, a wall socket, i.e., an ongoing
and seemingly inexhaustible source of energy. Modern
computers do not have to consider how to obtain their
next volt, or whether the program they are running is
more efficient than some other equivalent way of solving
the problem at hand. Without these worries troubling
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their design, modern computers compute with extreme-
ly high speed and accuracy, and communicate informa-
tion internally at high rates. All these features contribute
to the generation of entropy (6). But most importantly, a
modern computer’s life has never depended on its
choices with regard to the differential allocation of pow-
er to computing speed, energy usage, precision, or algo-
rithm efficiency. This is in dramatic contrast to the com-
puting economics of evolved biological systems.

In contrast to the example above, biological computers
run on batteries which they must recharge using the be-
havioral strategies at their disposal; consequently, the
neural hardware and neural software of real creatures
have never had the option of being grossly inefficient
(7,8). This latter observation is beguiling because it
seems so obvious, but these constraints have crafted
remarkable efficiency into nervous systems wherever
we have been able to look closely including visual pro-
cessing (9-12). The human brain runs on about 20-25
Watts, representing 20% to 25% of an 80-100 Watt
basal power consumption. All the processes that the
brain controls — vision, audition, olfaction, standing, run-
ning, digestion, and so on — must share this extremely
low energy consumption rate. And no matter how one di-
vides this energy consumption among ongoing neural
computations, one arrives at an unavoidable conclusion:
evolved nervous systems compute with almost freakish
efficiency (13-17).

To be this efficient, biological computing devices must
take account of investments — efficiencies in the opera-
tion of their parts and the algorithms running on those
parts — and returns (expected increases in fitness). Col-
lectively, these issues constitute what we call neuroeco-
nomics |, the efficient operation of neural tissue. In the
visual system, this kind of question has blossomed into
arich area of investigation that is referred to as the “nat-
ural visual statistics” approach to vision. The central
idea is that the neural representations (processing

strategies and organizational principles) in the visual
system represent a “matching” of the encoding strategy
in vision to the natural statistical structure present in in-
put “signals” (12,18).

This efficiency perspective is important because it has
not been applied systematically to the problem of har-
vesting rewards (Fig. 1). Figure 1A does not do justice
to the complexities of a creature wandering about and
deciding where it should search for prey, or whether
such searches are worth it. It is a deeply economic prob-
lem, but it depends on the statistics of likely reward dis-
tributions in the world and it depends on the creature’s
own internal state and goals: a creature’s internal state
changes the way it processes and values external stim-
uli. The idea of quantifying both the statistics of external
reward and variables related to internal state is implicit
in work on optimal foraging, i.e., how an animal should
choose to search in order to maximize its net return on
some food or prey (19-21). In summary, the “natural sta-
tistics of reward harvesting” depends on i) the internal
“signals” of the particular organism type, ii) the possible
redundancies latent in these signals, and iii) the way
that both “match” to the statistics of external stimuli and
behavioral options.

Why should heat measures correlate with cognitive
variables?

The above efficiency perspective also invites, and an-
swers broadly, an important question that arises in the
context of modern neuroimaging experiments: Why
should “heat measures” (functional MRl measures) tak-
en from small volumes of neural tissue encode informa-
tion about the computations being carried out nearby?
(Fig. 1B). The broad answer is efficiency. One might ex-
pect an extremely efficient device to match the dynam-
ics of ongoing power demands directly to the computa-
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Natural scenes equipped
with “rewards”

First order “heat equivalents”
theories
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Infer efficient decisions using
p Statistics and value of rewards
within natural scenes

Computational models of
behavioral measurements

Figure 1 - Efficient representations and
their coupling to brain responses. A Re-
ward harvesting is a complex problem
that depends on the efficient processing
of cues from the world in order to “harvest
prey” (red) that may be difficult to find or
catch. External sensory cues are only
part of the problem. As indicated, the oth-
er source of signals lies within the crea-
ture seeking the rewards — the collection
of “internal” signals that define its needs
and goals. These variables can change
dramatically the value of external stimuli.
An efficient nervous system should con-
tain representations that match the inter-
nal needs of the creature to the external
signals that meet those needs. This is
clearly a complex and dynamic problem.
B Because of their dependence on local
changes in blood flow and other proxies
for metabolic demand, current non-inva-
sive imaging approaches to human brain
function (PET and fMRI) implicitly draw a
relationship (not an equivalence) be-
tween cognitive variables and something
akin to a “heat” measure.
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tions it is performing. In the most efficient scenario (gen-
erally impossible to achieve), the dynamics of metabolic
demand in a small volume of neural tissue would be ex-
actly equivalent to the computations carried out by that
volume. These demand measures would exist across a
range of time and space scales; therefore, one should
not expect a measurement as crude as functional mag-
netic resonance imaging (fMRI) to detect all of them.
Nevertheless, efficiency hypotheses provide some in-
sight into why “heat measures” should relate in any sen-
sible way to cognition. If neuroeconomics (as defined
above) is to produce a truly biological account of deci-
sion making, then it must descend further into the effi-
cient mechanisms that compose the nervous system. In
short, it must re-connect deeply with neuroscience and
consider more seriously the styles of computation re-
quired to implement efficient behavioral algorithms in re-
al neural tissue. In its incipient steps, neuroeconomics
has in large part tested decision making in humans and
non-human primates, using fMRI, PET, or single-unit
electrophysiology as the neural probes of choice. But
the really important advances will come when detailed
mechanisms can be connected with interesting behav-
ioral and imaging work.

The second area of neuroeconomics, neuroeconomics
Il, chooses as its starting point behavioral algorithms
and neural responses associated broadly with decision
making and the kinds of valuation that underlie it. And it
is precisely here that portions of economics and neuro-
science are beginning to find fruitful common ground. In
particular, they find a common lexicon in computational
models derived from an area called reinforcement learn-
ing (22).

Reward harvesting, reinforcement learning models,
and dopamine

As outlined above, the efficient harvesting of rewards
from the real world is a complex task that depends on
signals originating both within and outside the organism.
In short, a creature needs efficient internal representa-
tions that match its collection of internal needs to the ex-
ternal signals that meet those needs. One approach to
these problems is called reinforcement learning (RL), a
modeling approach that casts the reward-harvesting
problem explicitly as an interaction between the internal
needs of the creature, the external signals from the en-
vironment, and an internal teaching signal that depends
on both (22).

Biologically, RL models have provided insight into the
computations distributed by midbrain dopamine neu-
rons; these neurons constitute an important neuromod-
ulatory system involved in reward processing and deci-
sion making related to reward harvesting (23). We re-
view the essence of these models here, before showing
their application to imaging experiments in humans.
Modeling work on midbrain dopamine neurons has pro-
gressed dramatically over the past decade and the re-
search community is now equipped with a collection of
computational models that depict very explicitly the
kinds of information thought to be constructed and
broadcast by this system (23-30). These models arose
initially to account for detailed single-unit electrophysiol-
ogy recordings of midbrain dopamine neurons made
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while primates carried out simple learning and decision-
making tasks (26,31-33), or to account for decision mak-
ing in honeybees equipped with similar neurons (34). A
large subset of the midbrain dopamine neurons partici-
pates in circuits that learn to value and to predict future
rewarding events, especially the delivery of primary re-
wards like food, water, and sex (2,26,27,35-40).

Collectively, these findings have motivated a specific
computational hypothesis according to which dopamine
neurons emit reward prediction errors encoded in mod-
ulations in their spike output (25-27). This hypothesis is
strongly supported by the timing and amplitude of burst
and pause responses in the spike trains of these neu-
rons (25-27,32,37,39,41). In recent years, this work has
evolved significantly and this model applies correctly to
a subset of transient responses, but clearly not to all
transient responses (42-47). Also, the model does not
account at all for slow changes in dopamine levels that
would be detectable with methods like microdialysis.
The complaints about the reward prediction error hy-
pothesis pertain primarily to other information that
dopamine neurons may also be distributing. The most
coherent theoretical account is that advanced by
Kakade and Dayan (45), which posits an extra “bonus”
signal for exploration encoded in dopamine transients,
an idea recently pursued by Redgrave and Gurney (46).
Despite these open issues, the reward prediction error
hypothesis for rapid changes in dopaminergic spike ac-
tivity continues to explain an important part of the reper-
toire of responses available to these neurons (Fig. 2,
over). In other words, increases in spike activity (from
background rates) mean “things are better than expect-
ed”, decreases mean “things are worse than expected”,
and no change means “things are just as expected”. In
this interpretation, this system is always emitting infor-
mation to downstream neural structures since even no
change in firing rate carries meaning. The reward pre-
diction error (RP error) takes the following form:

RP error = current reward + y (next reward prediction)
— (current reward prediction)

where vy is a scaling factor between 0 and 1, and a way
of weighting the near-term future more heavily than the
distant future. For our purposes, two aspects of this
equation are critical: i) The system uses “forward mod-
els” to produce an online estimate of the next reward
prediction, which is constantly combined with the current
experienced reward and current reward prediction;
i) The predictions and their comparison across time rep-
resent an underlying value function stored in the ani-
mal’s brain. To see this, we write the model as:

RP error = current reward + y V(next internal state) —
V(current internal state).

Here, the function V, called a value function, is written
as a function of the internal state of the animal. In this
expression, valuation takes the form of a value function
that associates each internal state with a number, its
“value”, which represents the total reward that can be
expected (on average) from that state in the distant fu-
ture (22, 29). This kind of stored value is like a long-term
judgment; it “values” each state. And it is these values
that can be updated through experience and under the
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Figure 2 - Dopamine transients encode reward prediction errors. A Dopamine spike activity and expected value of future reward. Dur-
ing training, each visual cue predicted a reward two seconds later (recordings from alert monkey), but with differing expected values.
The expected value of the future reward (probability p of reward X magnitude m of reward) was (left to right) 0 ml (p =1 X m = 0 ml),
0.025 ml (p =0.5 X m =0.05ml), 0.075 ml (p =0.5 Xm=0.15ml), 0.15ml (p =1.0 X m =0.15 ml), and 0.25 ml (p = 0.5 X m = 0.50
ml). Bin width is 10 ms. The spike activity of single dopamine neurons is shown at the top with their overlying spike histograms. Spike
histograms over 57 neurons are shown at the bottom. (49). The temporal difference (TD) error signal r; + y V(Si+1) — V(St) accounts
for exactly this pattern of change with learning where S; is the state of the animal at time t and yis a discount factor varying between
0 and 1. It also accounts for changes in firing when the timing of the reward is changed since this changes dramatically the expect-
ed value of the reward at the trained time. B Spike modulation in dopamine neurons carries reward prediction error. Top panel. The
dopamine neuron increases its spiking rate at the unexpected delivery of a rewarding fluid (spike histogram at the top, individual spike
trains beneath). Middle panel. After repeated pairings of visual cue (conditioning stimulus, CS) with fluid reward delivery 1 second lat-
er, the transient modulation to reward delivery (R) drops back into baseline and transfers to the time of the predictive cue (CS). Bot-
tom panel. On catch trials, omission of reward delivery causes a pause response in the dopamine neuron at the time that reward de-
livery should have occurred on the basis of previous training (traces recorded from alert monkey 2,27).

guidance of reinforcement signals like the dopamine RP ery, that is, the probability of reward x the magnitude of

error. Notice one important fact implicit here — the values
are silent, stored numbers. There is no natural way of
reading them directly; therefore, experiments on valua-
tion must tease out the underlying value functions indi-
rectly (Fig. 3).
The RP error signal highlighted above is exactly the
learning signal used in the temporal difference (TD) al-
gorithm familiar to the machine learning field (22,48). In
this computer science context, the learning signal is
called the TD error and is used in dual modes i) to learn
better predictions of future rewards, and ii) to choose ac-
tions that lead to rewarding outcomes. This dual use of
the TD error signal is called an actor-critic system (Fig. 2).
We will use the terms TD error and RP error inter-
changeably.
When used as a learning signal, the RP error can be
used to improve predictions of the value of the states of
organisms using simple Hebbian (correlational) learning
rules (26,27,34). A collection of adaptive weights w used
to represent these predicted values are updated directly
in proportion to this TD error, that is, the weights change
(Aw) in proportion to the (signed) RP error:

Aw o TD error (learning rule)
The congruence of the TD error signal to measured
dopaminergic spike activity is quite remarkable. The TD
model predicts that the expected value (probability of re-
ward x magnitude of reward) of the delivered reward will
be encoded in the transient modulation of dopamine
spike activity. This feature can be seen in figure 2A for
conditioned cues that predict different expected values
of future rewards. In this figure, each cue predicted fluid
delivery two seconds into the future and the amount giv-
en above each cue is the expected value of that deliv-
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reward. The results reproduced here show dopaminer-
gic neuron activity after overtraining on the displayed vi-
sual cues (49).

As shown in figure 2B, the model also predicts important
temporal features of spike activity changes during con-
ditioning tasks. For example, the unexpected delivery of
food and fluid rewards causes burst responses in these

Actor-critic models

Value function Reward function

= ween-ven || ()

Actor

“ P = (1 + e -miti+bi-1

n Aw; = Adlt) ‘

Reward learning Action selection

Figure 3 - Hypothesized relationships of actor-critic models to
dopamine neuron spike output. Value function information
(across states and through time) and reward information com-
bine linearly at the level of dopamine neurons. This combination,
if encoded in spike modulations, means that changes in activity
encode reward prediction errors d(t). This signal is a signed
quantity and can be used in target neural structures for learning
and action choice (26,41,54).
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neurons (R in Fig. 2B). If a preceding sensory cue, like
a light or sound, consistently predicts the time and ex-
pected value of the future reward, two dramatic changes
occur as learning proceeds: i) the transient response to
reward delivery drops back to baseline firing levels, and
i) a transient response occurs at the time of the earliest
predictive sensory cue (CS in the middle panel, Fig. 2B).
However, the system keeps track of the expected time
of reward delivery; if reward is not delivered at the ex-
pected time after the predictive cue, the firing rate de-
creases dramatically at the expected time of reward. In
recent experiments (39), we have quantified precisely
dopaminergic spiking behavior during reward-depend-
ent saccade experiments in alert monkeys and conclud-
ed that these neurons indeed encode a quantitative RP
error signal.

Let us be clear about the scope of this model — it applies
strictly to rapid transients in spike rates in the 50-250
millisecond range and does not apply to other
timescales of dopaminergic modulation that may well
carry other information important for cognitive process-
ing and behavioral control. For example, the model is
agnostic with regard to baseline dopamine levels or
even fluctuations on slightly slower timescales like min-
utes to hours. Consequently, the model would not ac-
count for microdialysis results whose measurements lie
in these temporal regimes.

Despite these data showing clearly that rapid transients
in dopaminergic spiking carry a prediction error signal
for summed future reward (35), dopaminergic activity
clearly shows a range of “anomalous” responses unre-
lated to RP errors. Dopamine neurons will modulate

their activity to novel stimuli and longer-term measure-
ments of dopamine (~1min) show increases related to
approach behavior and other motor acts (35). Kakade
and Dayan have suggested that these “extra” signals
ride on top of the prediction error capacities of the sys-
tem (45). In addition, recent imaging work by Preuschoff
et al. (50) shows clearly that dopaminoceptive structures
modulate their activity both to expected reward and to
risk (reward variance), a fact consistent with the use of
this broadcast system in multiple roles. Work continues
briskly in this area and the models will need to adjust to
capture all the intricacies as experiments expose them.
Nevertheless, none of this work shows that the reward
prediction idea is wrong, only that it is incomplete. Its
role in designing and interpreting fMRI experiments has
been central and so we took time here to detail the mod-
els and some of the caveats.

The reward prediction error model guides fMRI
experiments in humans

Passive and active conditioning tasks

The RP error model has now been extended to fMRI ex-
periments in humans. Numerous reward expectancy ex-
periments have now been carried out, probing human
BOLD responses that correlate with RP errors (51-58).
This work consistently demonstrates a BOLD response
in the ventral striatum and ventral parts of the dorsal
striatum that correlate with a TD error expected through-
out the task in question (Fig. 4A).

instrumental task

Action required

Trial Subject Juice e
begins chooses delivered - E’:a‘;"
~.5sec 3 sec

passive task 0.8 ventral putamen 3
) :\g A
c
8s 04
T ' * n?rrirglal S :'\ : + Critic signal can be seen in
§ \‘ an average time course of the
2 00+ L7 | T J‘ hemodynamic response.
wesﬁ“_srp catch < \\ -
trial n
o4y v
H————————

No action required B

Actor signal detected in
dorsal striatum only when
action is required for task.

Figure 4 - Actor and critic signals in humans detected by fMRI. A A simple conditioning task reveals a TD-like prediction error signal (crit-
ic signal; see fig. 3) encoded in hemodynamic responses in the human brain. On a normal training trial, a cue (green arrowhead) is fol-
lowed by the passive delivery of pleasant-tasting juice (blue arrowhead) while subjects are scanned (TR = 2 sec). After training on these
contingencies, catch trials were randomly interleaved and the reward delivery was delayed. Reward reliability continued at 100%, only
the time of delivery was changed. The TD model predicts a negative prediction error at the time juice was expected but not delivered and
a positive prediction error at the (unexpected) delayed time. At these moments, the expected value of reward deviates positively and neg-
atively from that learned during training. Taking hemodynamic delays into account (~4 sec), a prediction error of each polarity (positive
and negative) can be seen in the ventral putamen during a surprising catch trial. The blue line is the average hemodynamic response
during a normal trial and the magenta dashed line is the average hemodynamic response during a catch trial (54). B Identification of po-
tential actor response in the dorsal striatum (see Fig. 3). A conditioning task is carried out in two modes requiring: i) a button press (an
action), and ii) no action at all. The dorsal striatum — a region involved in action selection — responds only during the mode where action
is required and shows no response when an action is not required. This is the first demonstration of an actor response detected in the
human brain (41,56).
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One extremely important finding by O’Doherty et al. (56)
is that the BOLD-encoded RP error signals can be dis-
sociated in the dorsal and ventral striatum according to
whether an action is required for the acquisition of the
reward. This finding is depicted in figure 4B. For passive
tasks, the RP error is evident only in the ventral striatum
whereas in active tasks, it is evident in both the ventral
and the dorsal striatum, but with a stronger component
in the dorsal striatum (Fig. 4B). These findings and the
model-based analysis that uncovered them suggest that
stimulus-response learning typical of actor-critic circuits
in humans may be associated with activation in the dor-
sal striatum.

Reward prediction error signals tracked during sequen-
tial decision making

The decision task shown in figure 5 is a modification of
a task meant to test a theory of decision making under
uncertainty called melioration (59,60). This task can be
envisaged as a simple way of modeling real-world choic-
es, where the rewards from a choice change as that
choice is sampled. In figure 5, the payoff functions for

each choice (A or B) change as a function of the fraction
of the previous 20 choices allocated to button A (23,61).
As choice A is selected, the subject is moved to the right
on the x-axis (fraction allocated to A increases) and so
choosing A (red) near the point where the curves cross
causes the returns from subsequent A choices to de-
crease while the returns from B increase (magnified in
inset). The reward functions model a common scenario
encountered by creatures in the real world.

Imagine a bee sampling one flower type repeatedly while
ignoring a second flower that it might also sample. All
things being equal, as the flower is sampled, its nectar re-
turn decreases (analogue to A, red) while the other un-
sampled flower (analogue to B, blue) refills with nectar
thereby increasing its nectar return the next time it is sam-
pled. A decision-making model, like an actor-critic archi-
tecture (Fig. 3), that uses a TD error signal as its input will
get stuck when choosing near such crossing points be-
cause these are stable points for the dynamics of the
model (2). Behaviorally, humans do indeed get stuck near
the crossing point; however, these data show that a “TD
regressor” for the entire 250-choice experiment identifies
a strong neural correlate in the putamen (right panel of

A Choice set
0.75
A 5
(o]
S o050
o
0.25

Payoff functions

1.00 M

RL correlates

TD error

optimal
allocation

*

actual allocation fo A

V]
o predicted allocation to A 1

A e-greedy policy

B logistic policy (“softmax”)

60 80 100
% A

Figure 5. Actor-critic signals during sequential two-choice decision task. A. Neural correlate of reward prediction error during sequential
choice task. Left. Two-choice task with returns encoded by centrally placed slider bar. Middle. Inset shows the average behavior of a TD
error-driven actor-critic model near the crossing point in the reward function. The colored arrows show what happens when red (A) or
blue (B) is chosen, and they indicate the direction that the subjects moves along the x-axis. The inset shows how these functions mod-
el one typical real-world occurrence for simple choices — choosing to sample A (red) tends to decrease returns from A while the unsam-
pled returns from B increase, like flowers re-filling with nectar while they are not being sampled. An actor-critic model will tend to stick
near crossing points (2). Right. The hemodynamic correlate of a TD error signal throughout the entire 250 choices in this task is shown
at two levels of significance [0.001 and 0.005 (random effect); n=46 subjects; y=12 mm]. The payoff functions for this task are modified
from a task originally proposed by Hernnstein and Prelec (59) to test a theory of choice called melioration (61). B Actor-critic model cap-
tures choice behavior. Subject decisions were predicted using a reinforcement learning model with two different methods to determine
the probability of choosing an action (e-greedy method and sigmoid method). For both methods, we assumed that subjects maintained
independent estimates of the reward expected from each choice, A and B, and updated these values on the basis of experienced re-
wards using a choice-dependent TD error (i.e., the Rescorla-Wagner learning algorithm). Choices were assumed i) to be probabilistical-
ly related to choice values according to a sigmoid function (softmax method, green curve) or, ii) to have a fixed probability of 1-¢/2 for
choice associated with bigger weight (e-greedy method, pink curve). Decisions were binned (x-axis) on the basis of the predicted likeli-
hood that subjects would choose A. Y-values indicate the actual average allocation to A for all choices within each bin. Linear regression
shows there is a strong correlation between predicted and actual choices. (MS:r=0.97, RO: r=0.99, FR: r=0.97, PR: r=0.97 for softmax
method; MS: r=0.97, RO: r=0.99, FR: r=0.95, PR: r=0.99 for e-greedy method) (adapted almost verbatim from 61).
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figure 5A). Figure 5B shows that the model also captures
the choice behavior exhibited by humans on this task.
Here, the model is the simple actor-critic architecture illus-
trated in figure 3 before, using a sigmoid decision function
(“softmax” function) that takes the TD error as input. Lat-
er, in figure 13, we illustrate how neural correlates of com-
ponents of computational models (here the “TD regres-
sor”) can be identified during reward-guided decision
tasks (23,29,58,62).

On this simple two-choice decision task, the computation-
al model is a central component in the identification of he-
modynamic responses that correlate with the TD error
signal (“RL correlates”, Fig. 5). The procedure for identify-
ing these “RL correlates” is straightforward. For each sub-
ject, we model the TD error signal throughout the entire
task, use this model to generate a sequence of choices
using the actor-critic choice model shown in figure 2, and
extract three parameters (learning rate and two initial
weights for each button) that minimize the difference be-
tween the predicted sequence of choices and the sub-
ject's measured sequence of choices. This is done indi-
vidually for each subject. The fitted parameters that pro-
duce the best behavioral match are used to compute the
TD error signal throughout the entire experiment (250
choices). This best-fit TD error is idiosyncratic for each
subject since subjects generate different sequences of
choices on the task. The best-fit TD error signal is then
convolved with the hemodynamic response function to
produce the predicted hemodynamic response for the TD
error (see figure 13 for illustration). The predicted hemo-
dynamic response is then entered into a standard gener-
al linear model regression with the measured MR data
(63,64), and regions of the brain that show the same he-
modynamic profile are identified using t-tests. This is the
“RL correlate” shown, in figure 5, in the putamen. In con-
trast to this method, the TD correlate shown in figure 4A
is a fluctuation measured directly in the average hemody-
namic response. All details of the fitting procedures can
be found, clearly set out, elsewhere (61).

Anticipation of secondary reward (money) also activates
the striatum

In this section, we are focusing on model-based ap-
proaches to reward processing as detected by fMRI,
however, human reward responses generate very con-
sistent activations across a common set of subcortical
and cortical areas. Some of the earliest work in this area
using fMRI was carried out by Breiter and colleagues
and others (65-67). This group recorded responses to
cocaine injections and found pronounced activation in
the orbitofrontal cortex and the nucleus accumbens
among a collection of reward-related regions. Early work
by Knutson and colleagues also showed pronounced
activation of the nucleus accumbens, but this group
showed accumbens activations anticipating the receipt
of reward (money) (51,52; Fig. 6). In addition, they found
that the peak accumbens responses correlated with the
amount of money received. Early on, Delgado et al. and
Elliot et al. also identified large striatal responses to
monetary rewards and punishments (40,68). Collective-
ly this work was important in establishing the possibility
that more sophisticated reward processing was taking
place at the level of the striatum. These assertions are
now almost paradigmatic, but these reward processing
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experiments, using a non-invasive probe that could look
“deep enough” into the human brain, helped to motivate
more serious consideration of the striatum as a region
involved intimately in reward processing. Prior to this
time, the striatum was considered to be a brain region
primarily (but not exclusively) involved in the selection
and sequencing of motor behaviors (69).
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Figure 6 - Anticipation of reward activates striatum. Hemody-
namic response to reward delivery grows with time from a cue
until reward delivered. The peak response scales with the am-
plitude of the monetary reward (52).

Harvesting rewards from other agents

We have now seen consistent fMRI-detectable respons-
es to reward delivery, anticipation of reward delivery,
and the sequential delivery of rewards predicated on a
sequence of actions. In many cases the design or inter-
pretation of these results was guided by reinforcement
learning models of reward processing and decision
making, or at least motivated in part by these models. As
with any model-based approach, the model is always
too simple an account of the reality exposed by the ex-
periments, but it is not a stretch to claim that the rein-
forcement learning models have significantly structured
our arguments and approaches to the vast array of
problems associated with adaptively defining reward
procuring. We turn now to a class of behavior most im-
portant for humans — harvesting rewards through inter-
action with other humans. It is in this domain that the
idea of a reward signal becomes most abstract, and in
the case of empathy and norm enforcement (Fig.s 15,
16), rewards can pass from one individual to another
without any exchange of material taking place between
the two. This is the sense in which fairness norms and
deviations from them form a true common currency both
within and across individual humans. Although we can-
not yet compute the exchange rates of such currencies
across individuals, we can certainly see their impact. We
start with fairness games derived from the behavioral
and experimental economic fields.

It is a rather intuitive claim that fairness between two hu-
mans is the equivalent, in some currency, of a transac-
tion that leaves both parties feeling satisfied with the
outcome without being coerced to feel this way. The
idea of fairness implies some understood norm of what
is expected from another human when an exchange is
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carried out. In addition, we all recognize that the idea of
a fair exchange between individuals extends well be-
yond the exchange of material goods (70). Despite
these expansive possibilities, fairness, like many other
social sentiments, can be operationalized and probed
with mathematically portrayed games (or staged interac-
tions) played with other humans (5,70).

Economic games expose fairness norms and abstract
prediction error responses

In exchanges with other humans, efficient reward har-
vesting — in the form of immediate rewards, favors, or
future promises of either of these things — requires an
agent to be able to model their partner and their future
interactions with their partner. An individual lacking this
modeling capacity is literally incapable of protecting
their own interests in interactions with others (5). It is
well known that mental illness in many forms debili-
tates one’s capacity to interact and exchange fruitfully
with other humans, and such incapacities are one im-
portant part of human cognition that psychiatry seeks
to repair. Consequently, it is particularly important to be
able to probe brain responses during active social ex-
changes among humans and to place the results into
some quantitative framework. Currently, neuroimaging
work in this area has been focused on two-person in-
teractions (71-78), with one notable exception — the
use of a social conformity experiment in the style of
Asch (79,80).

One particularly fruitful approach has been the use of
economic exchange games. Figure 7 illustrates the Ulti-
matum Game, probably better termed ‘take-it-or-leave-
it'. Player X is endowed with an amount of money (or
some other valuable resource) and offers a split of this

endowment to player Y, who can either accept or reject
the offer. If player Y accepts, both players walk away
with money; however, if player Y rejects then no one
gets anything! A “rational agent” prediction would be that
player Y would accept all non-zero offers (70,81). Hu-
mans reject at a rate of about 50% at roughly a 70:30 to
80:20 split. The data in figure 7B (right panel) show a
50% rejection rate at around 70:30 (5). The reader might
stop to “simulate” what they might accept or reject. No-
tice that the rejection rate changes when the number of
responders increases — the presence of a second re-
sponder causes both responders to accept a poorer split
from the proposer. This game and others like it (71)
probe fairness norms and in the context of fMRI show
that deviations from fairness norms act like rewards and
punishments and even change behaviors and brain re-
sponses quite significantly (71,75,82).

Figure 8 shows a bilateral insula response to unfair offers
from other humans (deviation from fairness norm shown
in figure 7B), a finding consistent with this structure’s re-
sponses to negative emotional outcomes (82-84). This re-
sponse was found to be diminished for a given level of un-
fairness if subjects played a computer (82). Of course the
negative emotions part may have followed the signal,
flagging a deviation from the fairness norm, but the impor-
tant point here is that in the economic game it is easy to
quantify the norm. Damage to the insula is consistent with
the role of this structure in computing deviations from
norms, if we maintain that norms are continually being up-
dated by experience (85). In chronic smokers, damage to
the insula appears to create a state where smokers do
not generate feelings that they need to smoke — they find
it subjectively easier to avoid relapsing after quitting (86).
They may have lost their ability to compare their norms to
their internal state or the possibility of linking such com-

Figure 7 - Two-person economic games
expose fairness norms. A Exchange
games between human subjects en-

ﬂ’-ﬂ gender internal models of others, which

may simulate interactions into the fu-
ture for a variable number of ex-
changes. These interactions evolved in
the context of social exchange where
multiple encounters were not only like-
ly, but were the norm. On these
grounds, it is not unreasonable to ex-
pect such games to engender models
of others that simulate multiple itera-
tions with a partner. B Ultimatum Game
(take-it-or-leave-it). One-shot game
where a player starts with a fixed
amount of money and offers some split
of it (here 60:40) to his partner. If the
partner accepts, both players walk
away with money (take it). If the player
rejects the offer, neither player gets
anything (leave it). A rational agent
should accept any non-zero offers
(70,81), but in humans, in fact, the re-
jection rate is 50% at 80:20 split, and,
as illustrated here, will change as the
number of responders increases. One
interpretation of these results is that hu-
mans possess well-established fair-
ness norms (96).
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parison to negative emotional states, which become the
proximate motivating mechanism to smoke again. The Ul-
timatum Game is particularly enlightening in suggesting
these possibilities and useful since they are easily incor-
porated into quantitative models. The exact answer
awaits future work.

The Ultimatum Game allows a one-shot probe of norms
and norm violation, but without the formation of any rep-
utations between the interacting humans. In normal life,
reputations built with other humans form the basis of our
relationships with others — another area where mental
illness can have devastating consequences. However,
reputation formation, like one-shot fairness norms, can
also be operationalized and turned into a quantitative
probe in the context of social interactions. Figures 9 and
10 show fMRI data from a trust game carried out in a
large cohort (n=100) of interacting humans. This partic-

ular game is a multi-round version of a game first sug-
gested by Camerer and Weigelt (87), but given its name
and current form by Berg et al. (88). Here, we show a
multi-round adaptation of this game where two players
play 10 rounds of pay-repay cycles (Fig. 9). One impor-
tant difference compared to the one-shot Ultimatum
Game is that, in this case, reputations do form between
the players [see (75) for details on reputation formation
in this game]. They each develop a model of how their
partner is likely to respond to the giving of too little or too
much money — in short, they form a shared norm of what
is expected of one another and respond briskly (in a
good or bad way) when that norm is violated.

A number of new results have been discovered using
this game while scanning both interacting brains (89);
however, here, we emphasize just one: a reward predic-
tion error-like signal in the caudate nucleus that occurs
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Figure 9 - Multi-round trust game: harvesting rewards from other humans. A On each round, one player, called the investor is en-
dowed with $20 and can send (“trust”) the other player (called the trustee) any fraction of this amount. The amount sent is tripled en
route to the trustee who then decides what fraction of the tripled amount to repay. Players execute 10 rounds of this pay-repay cycle.
Players maintain their roles throughout the entire task, allowing them to develop reputations vis-a-vis one another. B Timeline for
events in the multi-round trust game. Outcome screens were revealed simultaneously to both players and both interacting brains were
scanned simultaneously [the multi-round trust game is a variation on a game proposed elsewhere (87,88)].
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on the “intention” to change the level of trust in the next
round of play (Fig. 10). In early rounds (rounds 3-4), this
signal appears in the trustee’s caudate nucleus upon the
revelation of the investor’s decision, but in later rounds
(rounds 7-8) it occurs before the investor’s decision is
revealed. So the signal transfers from reacting to the in-
vestor’s choice to anticipating the investor’s choice. The
response shows up in a strongly dopaminoceptive struc-
ture (caudate) and exhibits exactly the temporal transfer
expected of a reward prediction error signal (75; Fig. 2).
A very clever use of a single-shot version of the trust
game by Delgado and colleagues shows that the cau-
date signals can be dramatically modulated by informa-
tion about the moral character (“moral priors”) of one’s
partner (Fig. 11; 90). Once again we see that reward pro-
cessing systems can flexibly and rapidly adapt their func-
tion to the problem at hand and can integrate a wide ar-
ray of information that shows up as measurable changes
in BOLD responses. The flexibility of the reward-harvest-
ing systems can also be illustrated by experiments using
information about “what might have happened” to gener-

ate measurable dynamic responses in the same reward-
processing structures (caudate and putamen).

Lohrenz and colleagues have used a market investment
game to track fictive error signals; a type of signal relat-
ed to the ongoing difference between what one “might
have earned” and what one “actually earned” (62; Fig.s
12-14). These investigators show that the brain tracks
fictive outcomes using the same reward pathways that
generate and distribute reward prediction error signals —
ongoing differences between what was expected and
what was experienced. So real experience and fictive
experience can both generate reward error signals, both
of which appear to influence a subject’s next choice in
the investment game (62). This game is particularly use-
ful since it might be used to explore brain responses in
drug addicts where the capacity to allow negative out-
comes that “might happen” to influence drug-taking
habits appears to be severely diminished or lost alto-
gether. It is possible that, among the many differences in
addicts’ brain responses, their brain is also unable to
generate error signals around what “might” happen to
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Figure 10. Correlates of reciprocity and future intentions (trustee brain). (Left brain, inset) Bilateral ventral caudate nucleus activation
identified by contrasting the brain response to positive reciprocity and negative reciprocity (75). Reciprocity is defined as the relative dif-
ference across rounds payment between the players. For example, neutral reciprocity means that the fractional change in available mon-
ey sent by one player was the same as the fractional change in available money sent by their partner; conversely, positive and negative
reciprocity refer to situations in which the fractional change in available money sent by one of the players was, respectively, greater/small-
er than the fractional change in available money sent by their partner. Contrasting brain responses to positive and negative reciprocity
identified the ventral caudate nucleus. (red and black traces) Average time series in the identified caudate region in early rounds (top;
rounds 3-4) and later rounds (bottom; rounds 7-8). The traces have been separated according to the trustee’s next move, but are shown
here at the time that the investor’s decision is revealed to both players. The trustee’s next move won't happen for ~22 seconds so this
response correlates with the trustee’s intention to increase (black trace) or decrease (red trace) their repayment in the near future. No-
tice the difference between the intention to increase (black trace) and decrease (red trace) repayment shifts 14 sec earlier as trials
progress and reputations build. This shift means that in later rounds (7-8) this signal difference is occurring before the investor’s decision
is revealed. This is a shift analogous to that seen in simpler conditioning experiments (see Fig. 2). (adapted from 75,78).
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them should they continue to follow their habits and the
urges that support them.

Common currencies: from fairness to pain

We have now reviewed evidence that reward process-
ing in the human brain can be tracked using fMRI across

a wide spectrum of stimuli or internal states that qualify
as rewarding. In figure 4, a passive and active condition-
ing experiment using fruit juice as the “reward” generat-
ed hemodynamic responses in the striatum (caudate
and putamen) that correlated with a prediction error in
the expected value of juice delivery. From primary re-
wards, like sugar water, we extended our discussion to
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Figure 11 - The influence of “moral priors” on striatal reward responses to revealed trust. A Single-shot trust task played multiple times,
but brain responses and behavior are altered by “moral priors” about one’s partner. Three partners were used: good, neutral and bad
(“suspect moral character” according to the authors of the study). Players were shown a picture and read a “cover story” about the
moral character of their opponent. Players consistently chose to trust the “good” partner more. B The authors of the study describe
the outcome best “As expected from previous studies, activation of the caudate nucleus differentiated between positive and negative
feedback, but only for the ‘neutral’ partner. Notably, it did not do so for the ‘good’ partner and did so only weakly for the ‘bad’ partner,
suggesting that prior social and moral perceptions can diminish reliance on feedback mechanisms in the neural circuitry of trial-and-
error reward learning.” Here we show the average time series in the caudate at the time the outcome is revealed. The responses il-
lustrate clearly the influence of the “moral prior” on measured responses. (adapted from 90).

Figure 12 - Fictive errors and the neural substrates of
“‘what might have been”. A market investment task
where market history is shown as decisions are made.
Subjects are shown their total available (lower left box)
and the fractional percentage change from the last
choice (lower right box). Subjects move a centrally
placed slider bar at each decision point (vertical gray
bar) to indicate the fraction of their total to commit into
the market (ranging from 0% to 100% in 10% incre-
ments). The “riskless” choice in this game is to “cash
out” (0% invested). After the bet is placed, the market
fluctuates to the next decision point — at that moment, if
the market goes up then all higher bets do better (high-
er gains), if it goes down then all lower bets prove better
(smaller losses). This task was used to track the behav-
ioral and neural influence of “what might have been” (fic-
tive error signal over gains), that is, the ongoing tempo-
ral difference between the best that “might have been”
gain and the actual gain. Figure 13 shows how such a
signal was tracked during this experiment. Twenty
equally spaced decisions were made per market and 20
markets were played (adapted from 62). In behavioral
regressions, other than the last bet and the market fluc-
tuation, this “fictive error over gains” was the best predic-
tor of changes in the subjects’ next bet showing that it
had measurable neural and behavioral influence.
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sequential decision making, social exchange with other
humans, the influence of “moral biases” in these ex-
changes, and even fMRI-detectable signals that corre-
lated with fictive reward error signals (62; Fig.s 11-14).

This remarkable range of “rewarding” dimensions illus-
trates a very basic point that we made much earlier, that
is, the signal source that controls the reward input to the
striatum/midbrain system defines implicitly the crea-
ture’s current goal and thus the external stimulus or in-
ternal state that the creature values at the present mo-
ment. It is reasonable to hypothesize that in humans, re-
ward-harvesting machinery has the capacity to be re-de-
ployed in pursuit of literally any representation that can
control the reward function r(t) as depicted in figure 3.
This is a powerful way of flexibly controlling a creature’s
behavior and of inducing cognitive innovation. A new
idea or concept gains control of the reward function r(t),
and the reward-harvesting machinery that we share with
every other vertebrate on the planet takes over, com-
putes reward prediction errors and other quantities (45),
and directs learning and decision making for some time.
It is now clear why the brain must have a way of gating
and filtering the kinds of representations (probably inti-

mately dependent on the prefrontal cortex) allowed to
govern its reward-harvesting machinery (91), and why
ideas about reward prediction errors and gating in the
prefrontal cortex — the dopamine gating hypothesis —
should be taken seriously and mathematically extended
(92,93).

We close by touching briefly upon very recent work ex-
ploring another rewarding dimension — punishment, that
is, why humans are motivated to punish and the proxi-
mate brain responses and behavioral contexts that sur-
round the desire to punish. This is an important area, in
part because the “valuation function issue” surrounding
punishment of other humans relates directly to the na-
ture of social norms, their enforcement, and the way
they might encourage or discourage particular kinds of
social structure. This is an area where brain reward pro-
cessing intersects with the way that humans organize
themselves and others into institutions.

Two of the more interesting experiments in this area are
illustrated in figures 15 and 16. Figure 15 is a two-part
experiment that addresses the way that norm violations
in one domain (fairness in an exchange with another hu-
man) translate into brain responses related to another
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domain (empathic responses to pain in others). Given
what we have seen in this section, it is not surprising
that reward circuitry is again engaged. In figure 15, a
subject witnesses two other subjects playing a game of
cooperation/defection (sequential prisoner’s dilemma
game; 76). As illustrated, one of the players is a confed-
erate who has been told to play fairly or unfairly. The
subject, after watching the game transpire, is then put in
a scanner and allowed to watch the confederate receive
a painful stimulus (shock). In earlier work (94), these
same investigators had helped to identify brain respons-
es (using fMRI) that correlate with empathizing with ob-
served pain in others. In this experiment, males and fe-
males showed empathy-related fMRI responses when
observing pain being delivered to a “fair” confederate.
However, when pain was delivered to “unfair” confeder-
ates, the male brains diverged significantly from the fe-
male brains. Male brains showed dramatically reduced
responses in empathy-related regions and showed acti-
vation in reward-related areas (nucleus accumbens).
Even more remarkably, the nucleus accumbens re-
sponse correlated with the male subjects’ reported de-
sire for revenge as assessed by a subjectively reported
scale (76; Fig.16B, over). These are revealing findings
in that the neural signatures correspond quite well with
a behavioral account that casts males as norm en-

forcers (76). Figure 16A agrees with these general find-
ings, but it shows an experiment that directly tested
brain responses correlating with the act of punishment
and not merely the desire to punish. These investigators
(74) used PET imaging and an ultimatum game to probe
directly neural responses associated with monetary
punishment of an unfair player. The results showed a
clear activation in the dorsal striatum of male brains to
punishment of another human who is perceived as
“bad”; a defector who has displayed an abuse of trust in
an exchange with another human.

Valutation diseases

The reinforcement learning models of reward process-
ing in the brain are clearly incomplete and oversimpli-
fied. Two things are clear from single-unit recordings in
dopamine neurons in the midbrain: i) they are capable of
encoding in their spike activity a reward prediction error
signal for summed future reward (26,27,35), and ii) they
also communicate a host of other responses not related
to this class of error signal (35). We reviewed, above,
some of the evidence showing that the model is incom-
plete. Nevertheless, the model has provided a way of
understanding error signals recorded in the striatum us-
ing fMRI across a wide array of task demands. In fact, a
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Figure 15 - Common currencies crossing domain boundaries: from fairness to pain. A two-part experiment showing how norm viola-
tion in one domain (deviation from fairness in a sequential prisoner’s dilemma game) is “credited” and paid for in another domain (ex-
perience of pain) (76). A B After the economic game (a sequential prisoner’s dilemma game played fairly or unfairly), the subjects ob-
served the confederates receiving a painful stimulus. C Males and females exhibited brain responses in empathy-related areas like
the anterior cingulate cortex and frontal-insular cortex, both shown here (76). D Male brains demonstrated dramatically reduced em-
pathy-related responses when they viewed unfair players receiving pain, but showed increased activation during this time in reward-
related areas. These reward responses correlated with the males’ subjectively reported desire for revenge toward the players per-
ceived as unfair (Fig. 16B).
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temporal difference reinforcement learning model has
been applied by Redish to explain a number of features
of drug addiction (95). The essence of that model is that
drugs of abuse generate an unpredicted increase in
dopamine that causes over-valuation of cues associated
with drug taking. Cast this way, addiction becomes a val-
uation disease caused by drug-induced dopamine in-
creases that cannot be learned by the underlying value
function. The underlying value function grows without
bound (95), which means that the value of drug-predict-
ing cues also grows without bound. Ironically, this rein-
forcement learning perspective links drug addiction to
movement disorders (e.g. Parkinson’s disease), and
might suggest novel treatment strategies or research
approaches.

In Parkinson’s disease, dopamine neurons are reduced
to ~10% of their normal number by some unknown set
of pathological processes. The reward prediction errors
generated by such a small number of dopamine neurons
run into a serious signal-to-noise problem. Fluctuations
in dopaminergic activity in these few remaining neurons
produce an extremely noisy prediction error signal,
which would be difficult for downstream neural targets to
interpret — they would have difficulty inferring “real” fluc-
tuations from the increased noise level in the few re-
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Figure 16 - Reward responses and the punishment of norm vio-
lators. A In an ultimatum game where punishment is possible,
the desire to punish activates the caudate nucleus (PET exper-
iment using O15 water; 74). Activation is recorded in the dorsal
striatum of male brains in response to punishment of another
human who is perceived as “bad”; a defector who has displayed
an abuse of trust in an exchange with another human. This ac-
tivation scaled with the subject’s desire to punish a perceived of-
fender. These responses are consistent with these brains treat-
ing the punishment of a defector as a reward. B Correlation be-
tween the subjective desire for revenge (in male brains) toward
an unfair player (Fig. 15) and the nucleus accumbens activation.
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maining cells. Consequently, it is difficult to detect differ-
ences in the values of the underlying state space — what
this means practically is that all behavioral options or in-
ternal mental states would appear to have the same val-
ue as the current state. In this case, downstream deci-
sion-making mechanisms would “see” that no other
state is any more valuable than the current state and
would naturally want to remain in that state. In the face
of a flat value function, the most efficient choice to make
is to freeze in the current state. In this depiction, Parkin-
son’s disease becomes a kind of “rational freezing dis-
ease” under the influence of a very noisy dopamine-en-
coded prediction error system. So the reinforcement
learning framework, which provided us with a way of un-
derstanding the wide range of reward tasks in humans,
also provides us with a new way of connecting addiction
and movement disorders under a common computation-
al framework.

We anticipate that efforts along these lines will progress
in both neurology and psychiatry and reasonably expect
computational psychiatry and computational neurology
to be emerging subfields in the coming years.
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