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ABSTRACT
Theory-driven and data-driven computational approaches to psychiatry have enormous potential for elucidating
mechanism of disease and providing translational linkages between basic science findings and the clinic. These
approaches have already demonstrated utility in providing clinically relevant understanding, primarily via back
translation from clinic to computation, revealing how specific disorders or symptoms map onto specific computa-
tional processes. Nonetheless, forward translation, from computation to clinic, remains rare. In addition, consensus
regarding specific barriers to forward translation—and on the best strategies to overcome these barriers—is limited.
This perspective review brings together expert basic and computationally trained researchers and clinicians to 1)
identify challenges specific to preclinical model systems and clinical translation of computational models of cognition
and affect, and 2) discuss practical approaches to overcoming these challenges. In doing so, we highlight recent
evidence for the ability of computational approaches to predict treatment responses in psychiatric disorders and
discuss considerations for maximizing the clinical relevance of such models (e.g., via longitudinal testing) and the
likelihood of stakeholder adoption (e.g., via cost-effectiveness analyses).

https://doi.org/10.1016/j.bpsgos.2022.03.011
Translation of research findings into clinical settings to solve
clinical problems is a primary challenge of modern psychiatry
(1). This requires a coordinated effort between at least 3 con-
stituencies: basic research (“bench”), clinical research
(“bedside”), and the community (“stakeholders”) (2). Within this
framework, clinical insights and experience motivate novel
basic research, while novel basic research motivates novel
therapeutic approaches.

Computational psychiatry aims to use advances in
computational cognitive neuroscience and machine learning to
improve knowledge about mental health conditions and their
treatment (3) and, as such, is an intrinsically translational field.
However, the direction of translation so far has mostly been
one-directional: from clinic to computation. Computational
approaches have been deployed in many ways to shed light on
the cognitive and neurobiological structure of established
psychiatric descriptions and classifications, but rarely to
discover novel descriptions or create new interventions.
Closing this translational loop by bringing these insights back
into the clinic encounters numerous challenges, many of which
are faced by the broader neuroscience field in general (3).
However, promising avenues for overcoming these challenges
are now emerging using theory-driven, data-driven, and hybrid
approaches. Here, we suggest new directions for research in
this area, discuss challenges, and propose solutions to maxi-
mize translation from computation to clinic.

FROM THE BOTTOM UP: TOWARD ALGORITHMIC
DEVELOPMENT OF NOVEL THERAPIES

Computational models find theoretical appeal in their ability to
help bridge levels of abstraction when describing a neural
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system’s function, i.e., from the implementation level to the
algorithmic level to the computational level (4). The imple-
mentational level describes how the neural system is set up
[e.g., which neurons encode rewards or punishments, and how
are they connected to other neurons (5)]. The algorithmic level
describes, in mathematical terms, the way in which the input
(e.g., experience with rewards and/or punishments) is trans-
formed to an output (e.g., conditioned responding or instru-
mental behavior), as in reinforcement learning (6). The
computational level describes what the system is seeking to
achieve (e.g., obtaining nutrition or avoiding harm).

As noted previously, this framework may be particularly well
suited to understanding and refining existing psychiatric in-
terventions (7). Many of the medical interventions at a clini-
cian’s disposal have been discovered, at least in part, as a
result of serendipity and may therefore lack a full-fledged
mechanistic theory to account for their efficacy. A well-
known example in psychiatry is the case of antipsychotic
medications for schizophrenia: their proposed mechanism of
action during initial development is different from what we now
know (8). It was subsequently hypothesized that their phar-
macological action was largely dependent on their affinity for
dopamine receptors (9). Models of dopamine that bridge
implementation (i.e., dopamine neurons in the midbrain and
their projection to the striatum and prefrontal cortex), algorithm
(e.g., the temporal difference learning model), and computation
(e.g., delusional beliefs, hallucinations, and/or apathy) are
valuable for understanding and optimizing pharmacological
interventions for schizophrenia (10–14) but were largely
developed post hoc, after the initial demonstration of the effi-
cacy of antipsychotic medications.
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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However, this type of analysis implies that there may be
potential for therapies to be developed and optimized at the
algorithmic level alone, by focusing exclusively on the mathe-
matical form of the psychological process that is thought to be
dysfunctional in the disorder (Figure 1). We assume that a
dysfunctional psychological process that is causally related to
a given symptom can be described by an algorithm, which is
built from a set of parameters that correspond to the core
components of the process. By selectively altering algorithmic
parameters or altering system inputs (e.g., providing more in-
formation) via clinical intervention, it is assumed that this will
change the dysfunctional process in a way specified by the
algorithm and ultimately result in an improvement of the clinical
condition (7). An area in which such principles have already
been adopted is within the reinforcer pathology framework for
understanding substance use disorders (15). For example,
substance users show a greater preference for immediate over
delayed rewards (15), which can be described by algorithmic
delay-discounting models (16). Behavioral manipulations [e.g.,
of episodic future thinking or working memory (17,18)], which
reduce the discounting of future rewards, can also reduce drug
consumption and thus represent a causal pathway for modu-
lating drug intake and a possible avenue for treatment.
2 Biological Psychiatry: Global Open Science - -, 2022; -:-–- ww
A related example is the effect of cost on demand: demand for
cigarettes can be affected by their price, so increasing cost per
cigarette suppresses demand (19). Algorithmic models of de-
mand [e.g., (20)] might be applied to determine the level of
tobacco taxation that optimally suppresses demand and in-
creases revenue (21) or evaluate contingency management
therapies, i.e., monetary reinforcement of successful absti-
nence (22–25) and have the advantage of providing a highly
translational approach to this problem (26).

One somewhat slippery aspect of developing descriptions
at the algorithmic level is that in the brain, it is entirely possible
that there are many algorithmic levels—computational pro-
cedures operating at different levels of description in the ner-
vous system. In using algorithmic similarities to understand or
treat behavioral or mental dysfunction, there are several rea-
sons why this may be a moving target: first, there may be
different levels of representation in the brain currently unknown
to us; second, the processing at any level is always changing
due to learning and adaptation; and third, there is also algo-
rithmic degeneracy, in which the brain might concurrently
implement different algorithms whose computational objective
is similar (27), and which may provide the capacity for
compensation in the case of functional disruption (28).
Figure 1. Theoretical example of how a potential
therapy can be developed and optimized by
considering the algorithmic process that gives rise to
a particular symptom or behavioral phenotype, in this
case, a reward learning deficit. Slowed learning
(observed behavioral phenotype) can be caused by a
number of upstream differences in the reinforcement
learning algorithm connecting disordered neurobi-
ology to behavior such as reduced reward sensitivity
or reduced learning rate. Selectively altering algo-
rithmic parameters, for example, reward sensitivity in
a subgroup in which reward sensitivity is the cause
of the learning deficit, can change learning in a tar-
geted way, increasing therapeutic efficacy. This type
of targeted treatment assignment is not possible by
considering the observed phenotype alone.
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Nevertheless, the computational characteristics of psychiatric
patients that are reflected in their symptoms may provide key
constraints in the search for their algorithmic underpinnings.
These constraints might reveal the dimensionality of the
algorithmic repertoire—the number and form of the latent
subprocesses that might be most important in determining
pathological behavior. Overall, a broader view may be needed
to determine the susceptibility of a particular algorithm to a
given intervention in the context of an individual’s capacity for
adaptation and/or compensation.

The algorithmic level also remains an essential component
of other types of translational research, namely, the use of
model organisms. It provides a convenient currency for iden-
tifying functional similarities and differences across species,
which is crucial for valid modeling of psychiatric symptoms
using experimental animals (29). For example, the identification
of similarities and differences between corticostriatal functional
connectivity across species (30,31), when taken in isolation,
can provide only limited insight into behavior. Here, analysis at
the algorithmic level provides crucial complementary informa-
tion. One possibility is that the same algorithm is represented
in the same way using different networks across species, so
different species might show a redundant representation of the
same algorithm. Alternatively, homologous circuits might
implement the same algorithm(s), while nonhomologous cir-
cuits would implement different algorithms. This would open
the potential for degeneracy and/or genuine behavioral differ-
ences across species.
PSYCHOMETRIC CONSIDERATIONS

A key challenge in moving computational psychiatry research
toward forward computation to clinic translation is establishing
the psychometric characteristics of both parametric estimates
from computational models and model-derived estimates of
brain activity (32). Test-retest reliability is a primary challenge
of task-related functional magnetic resonance imaging studies
(33), with some work finding very low test-retest reliability
(34,35). However, reliability may be higher in some brain re-
gions and under some conditions, e.g., within regions robustly
engaged by the task; when collecting larger amounts of data
(36–39); or when focusing on alternative metrics such as
functional connectivity (39) and multivariate patterns (40).

While there is an emerging literature on the reliability of
parameter estimates derived from computational models,
findings thus far have been very mixed (41–44), and few sys-
tematic studies of factors that might influence test-retest reli-
ability across different populations exist. There is also an
emerging literature on the reliability of computational model–
based estimates of brain activation (45,46). However, more
work is needed in this domain, including a systematic exami-
nation of best practices for optimizing reliability and the con-
ditions under which acceptable reliability is obtained. Further, it
is important to acknowledge that psychometric characteristics
are not an inherent property of a task or a model but are also
dependent on the sample being examined (47).

Another key challenge is making predictions about in-
dividuals rather than inferences about group-level differences
in parameter estimates or brain activity. Most studies using
theory-driven computational modeling approaches to examine
Biological Psychiatry:
either behavior or brain activation focus on group-level differ-
ences or correlations with symptom dimensions (48–54).
However, for computational psychiatry approaches to be
useful for clinical application, we will need to be able to make
inferences about specific individuals and to monitor longitu-
dinal changes across time within an individual or group during
treatment. Longitudinal designs raise a series of critical
measurement issues, requiring not just stability of effects
observable at the group level (and potentially indicative of
generalizable mechanisms) but also reliability at the individual
level to allow the quantification of meaningful variations in the
mechanisms (33,55,56). The extension of computational
psychiatry approaches to individual level prediction and
longitudinal within-person change is just in its infancy, but it
is a critical pathway forward to realizing the goals of compu-
tation to clinic translation (3,57–59) (see also Beyond Case
Control: Capturing Dynamic Processes Via Longitudinal
Computational Assessment).

Given the lack of knowledge about basic pathophysiology
underlying psychiatric disorders, determining what functions
as the gold standard for determining validity is a matter of
consensus among subject-matter experts. While patient self-
report will in some cases be the appropriate gold standard,
this may not be universally true. Medically, one example of this
is the instance of referred pain: A patient may self-report left
arm pain that, on examination, turns out to be caused by pain
and muscle damage elsewhere, such as would be the case in a
heart attack. In this instance, it is not the case that self-report is
unreliable or incorrect, it is simply that it alone is not sufficient
to adequately diagnose the underlying pathology. In psychia-
try, DSM diagnosis is also often considered as a gold standard
metric for determining validity in psychiatry (i.e., does this
computational parameter have sensitivity and specificity for a
given disorder). However, as has been highlighted previously,
this too may be problematic, because a single diagnostic label
may result from highly heterogeneous biological and compu-
tational causes.
TRANSDIAGNOSTIC AND PRECLINICAL
CONSIDERATIONS

In disease models from medicine, a biological process needs
to be measurably related to the indices of illness, and treat-
ment needs to alter it, thereby improving symptoms of the
illness. However, psychiatric illnesses are likely not of such a
kind (58); with complex compensatory processes, any symp-
tom or associated behavioral manifestation could arise from
multiple and distinct underlying causes, or the same underlying
cause could lead and contribute to multiple symptoms (60).
Indeed, computational, cognitive, and learning processes have
been associated with specific symptom complexes (29,61–65),
and emerging evidence indicates that engaging such specific
and potentially transdiagnostic markers may have clinical ef-
ficacy (66–68). Nevertheless, recent work has also raised
questions about whether, for instance, behavioral findings can
be informative about self-reported measures of illness (69).

Transdiagnostic, dimensional approaches, such as the
popular Research Domain Criteria (60), may be critical for
integrating scientific findings across basic, preclinical, and
clinical domains [for additional discussion see (70)]. However,
Global Open Science - -, 2022; -:-–- www.sobp.org/GOS 3
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one predominant concern given the complexity of behavior is
knowing what processes we are capturing. Consider anhe-
donia, the inability to experience pleasure, a construct listed
within the Research Domain Criteria framework as a behavioral
unit of analysis reflective of negative valence systems (71). In
psychiatry, anhedonia is most commonly known as a core
criterion for major depressive disorder, but it is also present
across other psychiatric diagnoses, e.g., addiction (72,73). In
humans, anhedonia involves markedly diminished interest or
pleasure in all, or almost all, activities (74). This includes the
inability to take interest in topics or hobbies that an individual
previously found engaging and a general lack of motivation
surrounding the pursuit of pleasures (e.g., food, sex). In ro-
dents, anhedonia is often recognized as a decrease in reward-
seeking actions or reward consumption and classically
assessed with tests of self-stimulation or sucrose preference,
respectively (75). We, of course, cannot equate a rat’s prefer-
ence for a sucrose solution with the paralyzing anhedonia that
characterizes major depressive disorder. We can, however,
parse such behavior into component parts to determine
whether the behavior observed is reflective of deficits in
pleasure, motivation, or even learning (76–78), all of which can
be carefully parameterized with models of demand and value
updating. Computational approaches, including deep pheno-
typing [e.g., (79)], provide an opportunity to uncover the parallel
processes that go awry in animal models and contribute to
psychiatric symptomatology in humans (80–84). It is none-
theless critical to note that the accuracy and utility of
computational models will ultimately be dependent on the
precision of the phenotyping itself (85).

Another important consideration is disease heterogeneity.
For example, if individual variation is readily apparent in a given
behavioral paradigm in rodents, should we expect to see such
behavioral variability between human subjects on a compara-
ble task [e.g., (80,86,87)]? If this variability is apparent in
humans, how do we determine whether it is reflective of the
same underlying processes captured in the rodent model? One
recently proposed framework for considering this is that of
computational validity (29), or the computational similarity
between information processing demands underlying parallel
tasks across species (29). Importantly, similar questions may
apply to transdiagnostic human research, e.g., are the bio-
logical and cognitive substrates of anhedonia in fact shared
across diagnoses? In addition, it is important to note that some
computational processes (e.g., variables indexing reinforce-
ment learning) may not consistently generalize across different
contexts and thus may, in fact, be reflective of specific be-
haviors under study rather than a shared latent psychological
construct (88). While we cannot offer concrete answers to
these emerging questions at present, we urge researchers to
think deeply about such questions and, in turn, the approaches
they are using both between- and within-species to advance
our knowledge pertaining to translational clinical neuroscience.

BEYOND CASE CONTROL: CAPTURING DYNAMIC
PROCESSES VIA LONGITUDINAL COMPUTATIONAL
ASSESSMENT

Clinically orientated neuroscience research has largely
depended on cross-sectional designs, often comparing a
4 Biological Psychiatry: Global Open Science - -, 2022; -:-–- ww
group of individuals with a given condition or disorder to a
group of control participants. Yet, these studies are not opti-
mized for individual-level prediction or for the study of what are
ultimately highly dynamic conditions, with varying symptom
triggers between individuals. Moreover, cross-sectional
markers do not necessarily hold information about longitudi-
nal change relevant for intervention and therapy. Thus, to reach
its clinical potential, future work will need to embrace the
dynamic processes inherent to psychiatric symptoms and
disorders by explicitly examining intraindividual longitudinal
change in computational parameters and developing task
paradigms and analytic methods specifically designed to
capture these dynamics (59,85,89). As a practical example,
recent work has demonstrated that intraindividual changes in
computational parameters, in this case a measure of ambiguity
tolerance, precede returns to opioid use among individuals in
treatment (58).

Naturalistic changes in clinical symptoms can suggest
potential novel treatment targets (90), and studies examining
treatments or interventions have the potential to shape clin-
ical decision making. For instance, recent successes include
the application of computational approaches to decision
making (54,58,91) and imaging (92–94) in predicting treatment
response and course in depression and substance use dis-
orders. Although a single time-point measurement may be
sufficient for diagnostic classification, and in some cases for
treatment selection, other clinically relevant outcomes such
as longer-term prognosis and determining if a current treat-
ment is sufficiently working for an individual, will require
denser sampling of behavior and neural function. In fact, it
can be argued that most clinical decisions require continu-
ously (re)assessing the person in time. This is most evident in
managing rapidly changing clinical phenomena, such as
suicidal behavior, manic/depressive episodes, and relapse to
drug use, all of which require ongoing treatment modification.
Even diagnosis and treatment selection can be improved
upon by longitudinal data (95). A move toward person-
centered computational psychiatry research is needed not
only for enhancing the potential for clinical translation but
also for basic research. To elucidate the mechanisms of
disease, computational psychiatry efforts need to be geared
more accurately toward evaluating which are the most clini-
cally relevant (and thus most defining) algorithmic parameters
and at which timescale.

The shift toward dynamic assessment can also facilitate
building computational cognitive neuroscience into the devel-
opment of just-in-time adaptive interventions, which are
increasing in use (96–100). The idea to study patient behavior
longitudinally has been embraced in recent years with the
increased availability of cost-effective and remote data
collection tools (e.g., http://www.thegreatbrainexperiment.
com; https://brainexplorer.net/; https://www.neureka.ie/) or,
more directly, using ecologic momentary assessments
(101–104), but only recently has increased emphasis been
placed on acquiring similarly densely sampled neural mea-
surements (105–109), and this work has overwhelmingly
focused on the monitoring of healthy states. The neural
dynamics of changing clinical phenomena remain largely un-
known (59). Using computational approaches to understand
these neural dynamics can help bridge between changes in
w.sobp.org/GOS
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computations inferred from behavior and variation in symptom
expression.

Given the heterogeneity and complexity of clinical phe-
nomena, these longitudinal behavioral and neural dynamics
should aim to capture multidimensional computational mech-
anisms (110). Prior work shows that conceptually distinct
computational markers, such as those that describe people’s
preferences for risk and delay and their propensity to learn in a
model-free versus model-based way, define distinct diagnostic
categories (111,112), symptom domains (62,113–115), and
clinically relevant outcomes (58,93,94). Further, even concep-
tually related markers, such as preferences for known risk and
unknown or ambiguous risk, can be differentially predictive of
the same clinical outcome (58). Thus, focusing on just a few
behavioral and neural variables at a time could preclude more
detailed computational consideration of related processes and
heterogeneous clinical profiles. A longitudinal and multidi-
mensional examination, a type of dynamic neurocomputational
fingerprinting approach (89), may therefore provide a more
complete understanding of mental illness and aid in developing
better tailored and timed interventions at an individual level or,
perhaps more immediately, at the group level via patient
stratification.
Figure 2. Incremental cost-effectiveness ratio (ICER) analysis. ICER
analysis is a method of associating an economic value to the cost of con-
ducting the test that can quantitatively estimate the effect that a test-based
assignment can have on treatment. ICER is based on the incremental costs
per unit of effect of the intervention and calculated as the difference in the
sum of specific direct and indirect costs divided by the inverted difference in
effect score [e.g., (125)]. In the example shown, the probability of a cost-
effective clinically meaningful response to different clinical actions are
plotted against the stakeholders’ willingness to pay. Willingness to pay in-
creases with buprenorphine given the high evidence base for its utility in
treating opioid use disorder. In contrast, willingness to pay decreases for
nonevidence based (e.g., brief intervention) and nontreatment (i.e., referral to
alternate source) actions.
THE FINAL FRONTIER: CLINICAL CHALLENGES TO
IMPLEMENTATION

The final hurdles for effective translation from computation to
clinic are of course those directly pertaining to implementation
and subsequent treatment development and selection: how
can we develop a pragmatic framework that would enable the
development of computationally informed tests in psychiatry
for different mental health conditions?

The types of outcomes under consideration for a test are
highly variable based on time frame, level of observation (e.g.,
symptoms vs. biological process), and interventions available.
A screening test would be useful to identify individuals at risk
for the disorder or who have a not-yet-clinically manifest dis-
order (116,117). A diagnostic test would provide evidence for
the presence of a particular disease or help arbitrate between
diseases with similar manifestations (118). A prognostic test
would provide patients and providers with information
regarding degree of recovery, severity of residual symptoms,
occurrence of associated complications, or likelihood of a
disease-free interval (119,120). Finally, a treatment-specific
test would help to guide which type of intervention is most
likely going to be associated with a positive outcome for a
particular individual. Within a computational framework, this
means that one will need to explicitly consider how risk, di-
agnoses, recurrence, or recovery translate to model parame-
ters that can give insights to the mechanistic aspect of the
disorder as well as pragmatically be as robust and reliable as
clinical tests.

Another pragmatic consideration is to determine who ben-
efits from the test. A test would provide a patient with infor-
mation that can be used to adjust activities, treatment
selection, and adherence and integrate individual experiences
into an explanatory disease model. The provider benefits from
a test by having a more precise disease model, selecting
disease-specific interventions, based on the underlying
Biological Psychiatry:
algorithmic disruption, and focusing attention on monitoring
disease-specific outcomes. From a payer perspective, tests—
even if not sufficiently sensitive or specific for individual
cases—can aid in deployment of resources to a particular
intervention or disease or other operational decisions. Finally, a
public health specialist can use tests to determine the need for
population-based resource allocation to reduce disease
impact.

Test characteristics will have different implications for each
of these stakeholders. An important challenge is to translate
computational models to stakeholders such that they become
both understood and actionable. Specifically, using a rein-
forcement model framework, the notion of different learning
rates for gains or losses as critical parameters for mood dis-
orders may require experts to reframe these measures in terms
of past history considered when taking rewards or losses into
account. However, an actionable test alone may also prove
useful (e.g., an aggregate risk calculator approach, which is
used to trigger adjustment of a well-validated treatment).
Moreover, the net benefit of a computationally informed test
needs to be expressed in numbers that are meaningful to
stakeholders (Figures 2 and 3). For example, the number of
recurrences of a depressive episode that could be prevented
with a positive test may be useful for a public health specialist,
whereas the likelihood of a particular patient experiencing a
depressive episode within the next 6 months may be more
useful for a clinician.
Global Open Science - -, 2022; -:-–- www.sobp.org/GOS 5
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Figure 3. Schematic diagram of computational
testing steps for determining clinical treatment.
Conceptual overview of computational testing steps
for determining clinical treatment within the specific
context of tests focused on screening, treatment
selection, and prognosis. However, these ap-
proaches can be readily extended to include diag-
nostic tests if there are differential actionables
associated with a particular diagnosis. The size of
the boxes and the subgroups are meant to indicate
the scale of the base rate or pre- and posttest
probability. DALY, disability-adjusted life years; Non-
Resp., nonresponder; TX, treatment.
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A test cannot be separated from the setting in which it is
administered. Even with a point prevalence of 1 in 5 individuals
having a mental health condition (121), a test with a positive
likelihood ratio of 4 to 1 (i.e., the chance that a person with a
disease will have a positive test over a person that does not
have the disease but will test positive) and a negative likelihood
ratio of 2 to 5 (i.e., the chance that a person who does have a
disease will test negative over the chance that a person who
does not have the disease will test negative) would result in as
many false positive as true positive cases. In other words, as
many individuals would be identified as having the condition
who in fact do not have it as would be identified as truly having
the disease. Thus, test characteristics, i.e., specificity and
sensitivity, are very much population-specific and may not
hold for the population at hand. For example, assuming that
the overall goal of a low-cost intervention is (at a minimum)
harm reduction, a test with high sensitivity and low specificity
might be acceptable for determining the need for an inter-
vention, such as initiation of methadone for opioid use,
but might not be optimal for predicting termination of metha-
done treatment. In both cases, the goal is relapse and
overdose prevention; however, maximizing sensitivity for
methadone initiation is most likely to minimize overdose risk,
whereas maximizing specificity for methadone cessation is
most likely to minimize overdose risk (1). Within this context, a
test with low sensitivity but high specificity might be accept-
able for prediction of treatment cessation but not for prediction
of treatment initiation (1). It is equally important to note that a
test evaluated in the general population may behave very
differently in a clinical population of a provider. Thus, the
population in which a computational model is developed and
tested is also essential to consider.

Tests are frequently evaluated by their statistical charac-
teristics, which some have called the single most problematic
misrepresentation of the utility of a test (119). Sensitivity and
specificity do not provide sufficient information to judge the
utility of a test because they do not consider the base rate of
the disease (or the pretest probability, in Bayesian terms).
Positive and negative likelihood ratios can readily be used to
compute posttest probabilities, which provide an intuitive
notion of the certainty a test can provide. Nevertheless, even
6 Biological Psychiatry: Global Open Science - -, 2022; -:-–- ww
these numbers are insufficient to readily assess the test utility
for 2 reasons. First, there are pragmatic aspects of a test that
are not reflected in these numbers. As mentioned above, the
base rate of the disease in the population tested is one aspect,
but more importantly, does the test involve an individual
assessment by a trained provider, is it dependent on its
implementation, and/or does the test itself alter the disease
state in the individual or change behavior subsequently? These
issues are particularly relevant for mental health conditions.
Second, what are the interventions associated with a positive
or negative test, and how do costs, intensity of intervention,
and probability of successful or unsuccessful outcome change
because of the test result? In summary, a test is merely a step
embedded in a chain of evaluations and interventions aimed to
improve patient outcome and needs to be evaluated as such.

These ideas might be integrated with potential for in silico
simulation for the development and optimization of treatments
at the algorithmic level (see From the Bottom Up: Toward
Algorithmic Development of Novel Therapies). Specifically,
algorithmic models of psychiatric dysfunction could be used to
simulate clinical status and predicted clinical course if the
mathematical form of these can be estimated. Presumably, at
first, initial tests of symptoms (e.g., self-report diagnosis) may
provide a somewhat uncertain indication of a patient’s clinical
course, but further evaluation and tests may provide more
accuracy and, in particular, favor one model over another (i.e.,
provide more accurate differential diagnosis). Monitoring the
model predictions could be conducted with further testing
during treatment, and predictions of the model could be
refined further. Typically, it would be expected that a single
model be selected with high likelihood, and this would
describe the clinical course with high accuracy. In practice,
however, there might be multiple plausible models that will
describe a participant’s symptoms, and these might be difficult
to differentiate with available tests. Treatments that might
cause harm under one plausible scenario might be avoided,
while the probability of different scenarios might be used for
weighting the utility of tests or treatments in light of information
about costs and benefits. Further testing should eventually
disambiguate the different models according to the precision
of their predictions, and oversight by a physician will be
w.sobp.org/GOS
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particularly important in cases where model error is particularly
high (for example, a manic episode elicited by an antidepres-
sant medication during treatment). Overall, this system might
be implemented computationally as a mixture of experts
approach (122,123), in which different models can be grace-
fully integrated to provide unique predictions across different
domains (e.g., across uniquely specified disorders) or compete
to describe a given domain. This framework could provide
weighting for probabilities of different scenarios, as well as
utilities for potential harms, costs, and clinical benefits. The
physician is also represented within this system, both as a
provider of information (e.g., through the diagnosis) and also as
an independent expert with their own biases (124), but who
might exert more control if the model predictions are associ-
ated with risk or are inaccurate. The computational researchers
who derived the test are also inherently represented within this
system; thus, for maximal translation from computation to
clinic (as opposed to vice versa), even basic computational
research must also weigh the above considerations.

CONCLUSIONS

Effective forward translation from computation to clinic re-
mains elusive, yet it may be enabled by careful consideration
of mechanisms at an algorithmic level, psychometric stan-
dardization, recent developments in longitudinal phenotyping
and other theory-driven computational approaches, and
careful, realistic evaluation of a test’s efficacy within a specific
real-world clinical context.
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