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We summarize a new approach to neuromodulator detection that provides colocalized detection of dopamine, serotonin, and
norepinephrine at subsecond timescales and promises to provide submillisecond estimates of the same. The methodology,
elastic net electrochemistry, is used to estimate dopamine and serotonin in the striatum of conscious human subjects during
active decision-making. We show a proof-of-principle example of the same method working on commercially available depth
electrodes in common use for epilepsy monitoring and neurosurgical planning in humans, which further promises to make such
electrodes sources of fast neuromodulator information never before available in human subjects. We discuss the implications of
this methodology for making direct tests in humans of the computations carried by these three important neuromodulatory
systems. The methods also promise great utility in model organisms, but this chapter focuses on the possibilities for human use.

INTRODUCTION

Neuromodulatory systems that deliver dopamine, sero-
tonin, and norepinephrine to target neural regions are cru-
cial for sustaining healthy mental function. Disturbances
in these systems by injury or disease underlie a wide range
of psychiatric and neurological dysfunction. Over the last
two decades, these systems have been the focus of mod-
eling that seeks to understand in computational terms their
role in learning, memory, mood, and mental disorders.
These systems are hypothesized to encode important
learning signals about rewards, punishments, and atten-
tional allocation as modulations in their spike rates. In
principle, these modulations in spike rate translate into
subsequent changes in the downstream delivery of their
neuromodulators. As this modeling work progresses into
its third decade, it is important to highlight some critical
gaps in our understanding of diffuse neuromodulatory
systems that modern methodologies stand poised to sur-
mount. We focus here on two big gaps, but allowing that
there are many others: (1) the neurophysiology of these
systems in humans and (2) the feasibility of ultrafast neu-
romodulator measurements.
From a neurophysiological and signaling perspective,

the vast majority of work on neuromodulatory systems has
been in model organisms, which provide fantastically
high-precision access and control. The caveat here, how-
ever, is in the difficulty of understanding the relationship
of model organism behavior—alongside some interesting

biological perturbation or measurement—to human
behavior. This is simply a hard problem biologically and
computationally. This kind of cross-species behavior gap
is not easily bridged because it is difficult to know which
behavioral primitives in rodents represent homologous
behavioral capacities in humans. Moreover, experiments
in model organisms must necessarily focus on simple be-
haviors (approach, avoidance, simple choices), and this
leaves out the kind of important abstractions available to
humans and that may be perturbed in humans by disease
and injury. Human behavioral work—in the healthy and
otherwise—brings its own face validity, but at a cost—the
methodologies available for neural eavesdropping in hu-
mans have simply not been at the same level of granularity
available in model systems.

A New Inferential Approach to Fast, Selective
Neuromodulator Detection

We have recently developed new approaches that permit
fast (subsecond), simultaneous, and colocalized detection
of extracellular dopamine, serotonin, and norepinephrine
and have extended the use of these tools for use in con-
scious human subjects (Kishida et al. 2011, 2016; Moran
et al. 2018; also see Platt and Pearson 2016). Our electro-
chemical detection approaches require direct access to
brain tissue, which in humans can only be gained by pig-
gybacking on clinical procedures requiring neurosurgery.
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Nevertheless, direct investigation of human brain function
is requisite if we are to develop an understanding of how
moment-to-moment fluctuations in dopamine, serotonin,
and norepinephrine encode information that affects hu-
man behavior, thoughts, and feelings. We review the ge-
neral approach and its connection to established machine
learning techniques and we further point out how these
methods can be implemented on electrodes in routine use
in model organisms and during neurosurgical procedures
in humans. These latter implementations have the poten-
tial to be transformative for our understanding of the com-
putational underpinnings of neuromodulation (e.g., Dayan
2012; Sutton and Barto 2018) because they will make fast
neuromodulator detection possible using off-the-shelf
hardware and software.
Despite the recent revolution in methods to record and

induce neural activity, there has been relatively less pro-
gress in making dynamic, chemically specific measure-
ments of neurotransmitter fluctuations in the extracellular
space. Fast-scan cyclic voltammetry has been the only
rapid way to monitor subsecond neurochemical changes
in neural tissue (Stamford et al. 1984; Kuhr andWightman
1986; Mermet and Gonon 1986; Stamford 1990). Howev-
er, the recent advent of an expressible dopamine sensor
(DLIGHT; Patriarchi et al. 2018) should provide a host
of new insights in model organisms where such an inno-
vation can be expressed selectively in specific cells types.
Cyclic voltammetry has been adapted for use in behaving
animals over sufficiently long periods suitable for connect-
ing neuromodulator fluctuations (e.g., typically dopamine)
to behavior (Phillips et al. 2003; Robinson et al. 2008;
Huffman and Venton 2009; Clark et al. 2010). The basic
approach is to introduce a voltage sweep on a carbon fiber,
record the measured currents, and take advantage of the
fact that different oxidizable species react on the surface of
the carbon fiber at different rates at different voltages.
These rates of reaction are time and concentration depen-
dent. In this fashion, the induced current time series po-
tentially carries a “signature” for different important,
oxidizable neurotransmitters that can be calibrated against
known concentrations. These approaches contain pitfalls
because of the potentially adulterating influences of com-
pounds like ascorbate, pH, and other neurotransmitters
with nearby oxidation peaks (e.g., norepinephrine vs. do-
pamine) as well as a number of other potential confounds.
The aim of deploying voltammetric approaches in hu-

mans inherits another challenge. In a human subject,
because of the risk for contamination, it is not feasible to
calibrate sensors beforehand and then introduce the cali-
brated electrode into the brain. Instead, a model for do-
pamine detection must be developed in an in vitro setting
and used to infer concentrations on a similar, but distinct
electrode to be deployed in vivo. Hence in vitro calibration
models must be made stable to known influences such as
pH and norepinephrine, both of which could confuse a
putative dopamine measurement in vivo. The models
also must be shown to generalize across electrodes and
must be robust to dopamine levels on which the models
were not trained. These challenges strongly suggested to us
the use of a modern statistical inference method alongside

very large training data sets typical for modern machine
learning approaches. In our initial work (Kishida et al.
2016; Moran et al. 2018), we retained the voltage sweeps
typical of prior fast-scan cyclic voltammetry work (here a
10-msec triangular sweep followed by a 90-msec waiting
period—below we show in experiments that this waiting
period is not necessary), but adopted a different approach
to extracting a concentration-prediction model. As shown
in Figure 1, after recording the current time series we com-
puted a finite difference through time (Fig. 1C) and entered
this into an “elastic net” regression (Zou and Hastie 2005;
Kishida et al. 2016) on labeled data (here the “label” is the
concentration). Each time step in the differentiated current
time series is entered as an independent predictor. The
concentration-prediction models were extracted using a
standard cross-validation method (“glmnet.m” in MAT-
LAB; Qian et al. 2013).
One motivation for this approach was the fact that cur-

rent responses measured throughout nearly the entire vol-
tammetric cycle provide an excellent encoding of the
known analyte concentrations. Traditional analytic ap-
proaches focus the development of inference models on a
single point in the voltammogram (e.g., typically the oxi-
dation peak), which forces a loss of the information con-
tained in the rest of the voltammetric measurement that is
required to determine the chemical species identity. This is
illustrated in Figure 1D where the color code shows the
differentiated currents for different concentrations of do-
pamine and serotonin. Although each color traces out a
“wiggly” line, these concentration-dependent traces re-
main visibly discriminable throughout almost the entire
time series between the start and the capacitive transient
at 5 msec. The same claim holds for the time series from 5
msec onward (not shown). Thus, information about a par-
ticular dopamine or serotonin level is not concentrated
solely at the theoretically reported oxidation potential for
each but is instead spread through a relatively broad region
of the time series. This is visible for the ∼2-msec section
shown (indicated by the rectangular box in Fig. 1C) but is
present statistically for almost the entire time series. We
believed that the highly distributed concentration informa-
tion had not been exploited in the past; hence, we sought a
way to “dig out” a wiggling but coherent representation of
each concentration-dependent response.

Specifics of Elastic Net Electrochemistry

Figure 1A–C introduces the basic elastic net electro-
chemistry workflow (Kishida et al. 2016; Moran et al.
2018; also see Kishida et al. 2011). The basic approach
is to train an N-fold (in our case, a 10-fold) cross-validated
recognition model using data collected in a flow cell where
mixtures of dopamine, serotonin, and other analytes (or
contaminants) can be exactly controlled (and known),
and then further validate this model using out-of-sample
data in twoways. First, we test ourwithin training set cross-
validated models on measurements of dopamine and sero-
tonin not used in building the cross-validated recognition
model. Second, we test ourmodels using out-of-probe data
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sets to show howwell it generalizes tomeasurementsmade
with completely naive electrodes. Figure 2 shows one ex-
ample of how a serotonin model generalizes out of probe.
This figure also shows that the model reports 0 serotonin
(when that is actually the case) and reports no response to
pH changes and dopamine changes over a large range. The
same basic approach is taken for multianalyte mixtures
(Fig. 3) and for depth electrodes used for epilepsy moni-
toring in humans (Fig. 4).
For purposes of discussion, here we focus the descrip-

tion of our approach on detecting dopamine, but the same
basic principles apply to generating multianalyte models
(like those shown in Figs. 3–6). To fit a model using
known concentrations of dopamine in the context of vary-
ing pH, we use the “elastic net” to perform regularization
and automatic variable selection to determine a good fit
for a linear regression model

ŷ ¼ b̂0 þ x1b̂1 þ x2b̂2 þ � � � þ xpb̂p

that predicts the concentration of dopamine (y) given a
fast-scan cyclic voltammetry measurement. Note, one
fast-scan cyclic voltammetry measurement is equal to
the current measured during the application of a
10-msec triangular voltage sweep, as indicated in Figure
1A, followed by a 90-msec “wait period” for total of a
100-msec duty cycle. Here, we aim to estimate ŷ, the pre-
dicted concentration of dopamine for each 100-msec cycle
(Fig. 1A) given the vector of parameters x1 . . . xpð xQÞ,
which is the finite time derivative (dI/dt) of a single cyclic

voltammogram measurement. The betas b
Q
are regression

weights. The elastic net procedure for linear regression
models minimizes the residual sum of squares with an
additional penalty term, Pa(b). The elastic net penalty

Pa(b) ¼ (1� a)(1=2)jjbjj2‘2 þ ajjbjj‘1
is a mixture (convex hull) of the “ridge regression
penalty”

‘2 � norm: (1=2)jjbjj2‘2
(Hoerl and Kennard 1970) and “lasso penalty”

‘1 � norm: jjbjj‘1
(Tibshirani 1996) parameterized by α, which takes a value
between 0 and 1. To determine a best-fit linear regression
model, we collect voltammetric measurements from sam-
ples of known concentrations of analyte in vitro and per-
form 10-fold cross-validation before further validating
model performance on out-of-sample test cases (Kishida
et al. 2016).
In one sense, our approach is not remarkable—we use

off-the-shelf voltage clamp hardware (Molecular Devices)
and off-the-shelf software (elastic net through calls to the
glmnet toolbox in MATLAB). The model building ap-
proach, going from big data to a well-behaved model,
uses standard principles in statistical learning methods.
However, one major departure from prior voltammetric
inference methods is that we train on large data sets (e.g.,

A

D

B C

Figure 1. Elastic net electrochemistry. (Top) Diagram of the guide tube used during neurosurgery for DBS electrode implantation. The
carbon fiber probe is inserted through the guide tube, and the stainless-steel pin at right acts as reference ground. This is the same ground
used during training of models from flow cell data. Workflow for elastic net electrochemistry (see Kishida et al. 2016; Moran et al. 2018).
(A) Voltage waveform on electrode. (B) Measured current time series during ∼10-msec triangular waveform portion of the 100-msec duty
cycle. (C ) Finite time difference of current. (D) Carbon fiber electrode responses to dopamine and serotonin concentrations in format of
finite time difference plot. Concentration-specific information about dopamine and serotonin is “wiggly,” but this information is not
simply concentrated at the theoretical oxidation potentials for both neuromodulators.
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400,000 sweeps and hundreds of concentrations) and
across many electrodes (Fig. 2 shows model extracted
across recordings from 20 electrodes). Further, no experi-
menter judgement is necessary regarding the shape of the
voltammogram—with large amounts of data the nonspe-
cific variability in these responses is regressed out of the
resulting model. In building models this way, we believe
we have provided a path to standardization of these ap-
proaches in that we have removed the experimenter judge-
ment bias that is implicit in standard voltammetric
inference methods. What bias remains, importantly, is re-
portable in that all of the bias resides in the calibration data
sets used to train a givenmodel. This allows reinterrogation
of existing data and a scientific approach to identifying
features that improve or degrade the precision of new
models.

Elastic Net Electrochemistry on MultiAnalyte
Mixtures and Common Electrodes

A major challenge for recording dopamine, serotonin,
and norepinephrine concurrently is the selectivity of the
extractedmodels. That is, the goal of any inferencemethod
is to determinemodels that predict out-of-samplemeasure-
ment of analyte mixtures (e.g., dopamine and serotonin),
distinguish the analytes from one another, and distinguish
them from other compounds that could confuse the mea-
surements (e.g., norepinephrine, pH, and 5-hydroxy-in-
dole-acetic acid). Figure 3 shows just such a separation
(at 10.3 msec per estimate in which the 90-msec “waiting
period” from Figure 1A has been dropped). These mea-
surements were made in a flow cell where the concentra-
tions of dopamine, norepinephrine, and serotonin, 5HIAA

Figure 3. Four analyte model performance at ∼10 msec per estimate. (Top) Moment-to-moment predictions (10.3 msec per estimate
[97 Hz]) of four analyte model extracted by elastic net from a four-analyte mixture in a flow cell. (Bottom) Average performance of the
four-analyte model. Notice the model can also separate serotonin from 5-hydroxy-indole-acetic acid. Carbon fiber electrode.
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were controlled exactly. The top panel in Figure 3 shows
moment-by-moment predictions of the model (at 10-msec
resolution) and the bottom panel shows the average value
of these predictions for each known concentration. Figure 4
shows the elastic net extracted 5HT model prediction as a
function of contaminating pH and 5HIAA concentrations
(again, 10.3 msec per estimate as in Fig. 3).
Figure 5 shows predictions of a dopamine, serotonin,

and 5HIAA model extracted using an AdTech electrode
used for stereo-EEG recording in humans. As noted in the
figure legend, the models were extracted for the micro-
contacts as indicated. These estimates are at 10.3 msec per
estimate (∼97 Hz) similar to the results reported in Figures
2 and 3. These electrodes are just one example of plati-
num–iridium electrodes in common use in humans and
similar electrodes in common use in model organisms.
For model organisms, these methods open up many pos-
sibilities for neuromodulator recordings, but for humans
they could transform any platinum–iridium contact (with-
in an appropriate impedance range) into a source of fast
neurochemical information about dopamine, serotonin,
norepinephrine, and even the oxidative metabolite of sero-
tonin, 5HIAA. This kind of information could be used in a
host of cognitive paradigms, sleep, or changes in con-
sciousness to extract their dependence on these important
neuromodulators.
Figure 6 suggests that the fast information at 10.3 msec

per sample (Figs. 2–4) could be reduced to the order of a
millisecond or even faster. This latter possibility would put
these measurements on the same order of magnitude as
action potentials and modulations in their rate, which
would make these neuromodulator measurements capable
of tracking changes in spiking rates thought to carry pre-

diction error signals to target neural structures. Figure 6A
illustrates the impetus supporting the idea that order-mil-
lisecond estimates are possible. Here, the 10-msec trian-
gular voltage waveform is subsampled at random, using
only 50% of the points in the measured time series; a finite
time difference is computed across the remaining down-
sampled data (here it is actually a finite index difference
because consecutive points are not necessarily contiguous
in time); and this “time” difference is used to fit an elastic
net regression–based concentration-prediction model. As
shown, this procedure works well at 50% and 10% down-
sampling. The predictions shown are out-of-sample con-
centration estimates, but generalization to naive probes for
such down-sampling awaits future experiments.

Applications of Elastic Net Electrochemistry in
Human Striatum during Active Investment Game

We have presented a summary of an approach to elec-
trochemical detection that makes possible the colocalized
detection of dopamine, norepinephrine, and serotonin
from both carbon fibers and high-impedance platinum–
iridium electrodes that are in routine clinical use around
the world. These technical developments open up the pos-
sibility of using human subjects in whom neuromodulator
recordings at 10 msec or better could be paired with quan-
titative behavioral estimates and using electrodes put in
place for other reasons (currently clinical reasons). These
same methodologies also offer promise for model organ-
ism research and should be very useful in calibrating new
expressible optical sensors for neuromodulators—for ex-
ample, the new and exciting DLIGHT reporter for dopa-
mine (Patriarchi et al. 2018). Notably, simultaneous

Figure 4. Serotonin model performance versus pH and 5HIAA (10.3 msec per estimate). A three-analyte model was trained to predict
serotonin concentration in the context of varying pH and varying concentration of 5-HIAA, a known metabolite of serotonin that
confuses prior voltammetric inference methods. From left to right, serotonin concentration predictions are stable against a background of
increasing pH or increasing 5-HIAA concentration.
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multianalyte detection does not currently seem to be fea-
sible using receptor-based optogenetic methods suggest-
ing complementary, but distinct, roles for high-speed
electrochemical detection methods alongside rapidly de-
veloping optogenetic approaches.
Using carbon fiber microelectrodes and the opportunity

afforded by deep brain stimulating (DBS) electrode im-
plantation in humans (for Parkinson’s disease or essential
tremors), elastic net electrochemistry has been performed

in conscious human subjects during the execution of a
simple investment game (Kishida et al. 2016; Moran
et al. 2018; also see Platt and Pearson 2016 for commen-
tary). This game is cartooned in Figure 7A. Subjects are
endowed with $100 and presented with a market trace,
they invest between 0% and 100% of their holdings, the
market fluctuates, and they experience a gain or loss. This
repeats for 20 rounds for each market. The surgical pa-
tients practiced this game before surgery. In the surgical

Figure 5. Elastic net electrochemistry models on human electrophysiology electrodes. Three-analyte model on an AdTech human depth
electrode with low-impedance macrocontacts and high-impedance microcontacts. Cartoon at left shows electrode configuration. Micro-
contacts are distributed radially (and uniformly), but shown here as small dots indicating number of contacts at each location. These data
(shown to the right) are from a model extracted in a flow cell using contacts 7 and 10. Each colored dot (labeled prediction in each panel)
is a prediction for each 10.3-msec bin. Here a triplet mixture of dopamine, serotonin, and 5HIAA is used. All predictions shown here are
made from measurements not used in training the model.
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suite, subjects played six markets (see for BOLD imag-
ing on this task, Lohrenz et al. 2007; for dopamine record-
ings in caudate on this task, Kishida et al. 2016; for
serotonin recordings in caudate during this task, Moran
et al. 2018).
For Parkinson’s patients, this is a very engaging task,

which is important, because subjects off their dopamine
precursor medication fatigue quickly. One basic finding
that comports with extant data from human single unit
recordings in substantia nigra is that for high bets or bets
“all in,” changes in dopamine delivery to the caudate en-
code positive prediction errors as positive-going transients
(Fig. 7C) and negative reward prediction errors as
negative-going transients (Fig. 7C). Using a slightly mod-
ified version of elastic net electrochemistry, Moran et al.
(2018) showed an opponent pattern to serotonin fluctua-
tions in human caudate nucleus (from the same carbon
fiber that recorded the dopamine transients)—positive-
going serotonin transients encoded negative reward
prediction errors and negative-going transients encoded
positive reward prediction errors. This task is designed
to ask how on a fixed budget subjects allocate their money
with the amount “not risked in the market” remaining in
their pocket. Together, these data are the first subsecond
recordings of either dopamine or serotonin in human sub-
jects and the first clear subsecond report of such opponent
encodings.

DISCUSSION

Wehave presented a newapproach to the selective detec-
tion of biogenic amines that springboards off work in fast-
scan cyclic voltammetry on carbon fiber electrodes but
apparently exploits a feature of the current time series
data that had not been targeted by previous approaches.
We highlight this feature—that information encoding spe-
cific concentrations of dopamine and serotonin is distrib-
uted coherently throughout the electrochemical current
time series. We showed how this information can be easily
exploited by a modern machine learning method—the
elastic net—to extract a concentration-prediction model
for multiple analytes that include dopamine, serotonin,
and norepinephrine. This was accomplished with off-the-
shelf hardware and software, which we believe warrants
the coupling of other, perhapsmore sophisticated inference
approaches, to similar electrochemical approaches. These
methodological steps forward and their standardization
open up the possibility of testing important hypotheses
about dopamine, serotonin, and norepinephrine function
at order millisecond timescales and in human brains (our
focus in this paper).
We presented an array of experiments supporting the

separation of dopamine, serotonin, and norepinephrine
from one another and from pH and at least one oxidative
metabolite of serotonin, 5-hydroxy-indole-acetic acid.

C DBA

Figure 7. Application of elastic net electrochemistry in human striatum during investment game. Top inset shows placement of an
electrochemical sensor in the caudate during a DBS electrode implantation procedure for a patient with Parkinson’s disease. The
electrochemical sensor (see Fig. 1, top) follows the yellow path before functional mapping of the eventual DBS electrode path (green
path terminating in purple cross in left panel). (A) Market investment task (Lohrenz et al. 2007; Kishida et al. 2016; Moran et al. 2018);
(B) Reward prediction errors during a simple card game encoded in spike modulation in human substantia nigra (Zaghloul et al. 2009).
(C) Subsecond dopamine release in the caudate encodes reward prediction errors during investment task when investments are 100% of
participant’s portfolio Kishida et al. (2016). (D) Subsecond serotonin release encodes an opponent signal to dopamine release for reward
prediction errors (Moran et al. 2018) in the same task events as in C.
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These models were extracted in a flow cell environment by
comparison to a stainless-steel ground capable of being
used in human beings, and we reviewed one application of
the approach to dopamine and serotonin detection in the
striatum of conscious humans (Kishida et al. 2016; Moran
et al. 2018). We also showed a preliminary model extract-
ed similarly from a commercially available epilepsy elec-
trode in routine use in human depth electrode monitoring
suggesting that such depth electrodes could become sourc-
es of (potentially) ultrafast neurochemical information
about dopamine, serotonin, norepinephrine, and perhaps
other oxidizable species. This exciting use of the approach
has the potential to provide new information about neuro-
modulatory function in humans and invites similar work
in model organisms where a flexible method for their
colocalized recording has been lacking.
Last, we showed through a randomized down-sampling

procedure that order-millisecond or better estimates were
possible using elastic net electrochemistry (Fig. 6). This
demonstration suggests that a random 10% of the points
collected during the ∼10-msec triangular sweep contains
sufficient information to estimate a reasonably accurate
out-of-sample predictive model for both dopamine and
serotonin. In Figure 6, there are 1000 time points defining
the triangular waveform (the voltage forcing function),
which means the 10% case is only 100 random points
spread throughout the ∼10-msec duty cycle. These data
are not yet definitive because one needs to test these kinds
of manipulations out-of-probe on naive electrodes after
training on a group of electrodes; however, it suggests
that there is only a loose dependence of the models on
the time ordering of the points and even on the voltage.
These two observations together suggest radically differ-
ent approaches might also be possible, but those await
future experiments.

Testing the Reward Prediction Error
Hypothesis throughout the Human Brain

Dopamine signaling in the human brain represents a
crucial physical substrate that supports motivated learning
(Wise 2004; Bromberg-Martin et al. 2010), value-depen-
dent action choice (Montague et al. 2004), working mem-
ory (Cools and Esposito 2011), motor learning (Graybiel
1995), and a variety of other cognitive functions. Conse-
quently, perturbed dopamine signaling plays a major, but
complicated role in a range of conditions including drug
addiction and Parkinson’s disease. Despite the importance
of dopamine signaling in humanmental function, there has
previously been no method to gain access to ongoing fast
changes (subsecond) in dopamine delivery in the human
brain.
As presented here, elastic net electrochemistry address-

es this gap in our understanding of dopamine signaling by
implementing a new methodology for recording ultrafast
(potentially order-millisecond) dopamine fluctuations on
standard electrodes used in human electrophysiological
recordings and using this methodology to test an influen-
tial computational model of reward learning: the temporal

difference (TD) reward prediction error hypothesis for
dopamine (Glimcher 2011; Dayan 2012; Platt and Pearson
2016; also see Montague et al. 1993, 1994, 1995, 1996,
2004, 2006; Schultz et al. 1997; McClure et al. 2003;
O’Doherty et al. 2003, 2004; Tobler et al. 2005).
What is the reward prediction error hypothesis for do-

pamine? To quote Michael Platt and John Pearson (2016),

Dopamine encodes a key variable posited by theories of
reinforcement learning. These theories posit that animals
select behaviors on the basis of which ones they expect to
result in reward, updating their beliefs on the difference
between expectations and observed outcomes, good or
bad (3). This reward prediction error is large when re-
wards are unexpected and small when rewards are fully
predicted, and its magnitude and sign drive the speed and
direction of learning, respectively.

(Also see Montague et al. 1993, 1995, 1996, 2004, 2006;
Montague and Sejnowski 1994; Schultz et al. 1997; Bayer
and Glimcher 2005; Dayan and Daw 2008; Dayan and Niv
2008; Glimcher 2011; Dayan 2012.) This model has been
tested in nonhuman primates at the level of spiking activ-
ity in midbrain dopamine neurons (e.g., Hollerman and
Schultz 1998; Tobler et al. 2005; also see Schultz et al.
2015 for review). However, in human and nonhuman pri-
mates, the hypothesis has never been tested in terms of fast
changes in dopamine delivery—this is a central gap in our
understanding of reward learning in humans and its con-
tribution to important features of human health.
A number of health disorders in humans involve chang-

es in reward processing, value-based decision-making,
and reward learning. These include (but are not limited
to) substance use disorders (Bickel and Marsch 2001;
Chiu et al. 2008; Gu et al. 2015), psychosis (Sevy et al.
2007), anxiety disorders (Tolin et al. 2003; Casada and
Roache 2005; Jovanovic et al. 2010), and mood disorders
(Pizzagalli 2014; also see Beevers et al. 2013; Chiu and
Deldin 2007; Dayan and Huys 2008; Kumar et al. 2008;
Chase et al. 2010; Gradin et al. 2011; Kunisato et al. 2012;
Huys et al. 2013; Greenberg et al. 2015; Rothkirch et al.
2017). Consequently, a central question arises for human
health: How does subsecond dopamine delivery conform
to the reward prediction error hypothesis? In humans, a
clear answer to this question and its dependence on the
target neural region would represent a major step forward
in our understanding of dopamine’s role in neural process-
ing and hence its potential contributions to diminished
human health.
In humans, there is one experiment (a card game) show-

ing clearly that spiking activity in neurons in substantia
nigra changes according to a simple prediction error signal
(Fig. 7B; Zaghloul et al. 2009); however, there has been no
direct assessment of the “other end of the problem” in
neural structures where dopaminergic neurons project
(with the exception of Kishida et al. 2016 and Moran
et al. 2018 as discussed). So, the question arises, “Do
measured fluctuations in dopamine delivery actually en-
code reward prediction error signals throughout the human
brain?” The new methodological approaches presented
here will allow this question to be asked with selectivity,
that is, separating dopamine from serotonin and norepi-
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nephrine and real-time temporal resolution. As for specific
behavioral experiments designed around serotonin and
norepinephrine delivery, those are far too numerous to
list here; however, we anticipate that having the technol-
ogy to ask such questions will inspire the next generation
of human neuroscience research.
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