Direct Competitive ELISA (cytochrome c)

3:32 PM 9/15/09

REAGENTS

Z. Yan

<u>10X PBS (1 liter)</u>		<u>PBSN</u>	
NaCl	80 g	1X PBS	100 ml
KC1	2 g	NaN ₃	50 mg

1 M H₂SO₄

Na₂HPO₄·7H₂O 11.5 gMix well and store at room temperature.

KH₂PO₄

Add H_2O to 1 liter (Working solution pH ~7.3).

BBS (2 liters)		Blocking Reagent	
H_3BO_4	21 g	BBS	500 ml
NaCl	14g	Tween 20	$250 \mu 1$
Dissolve in H ₂ O, pH to 8.5 and volume to 2 liters		0.5 M EDTA	1 ml
and store at room temperature.		BSA	1.25 g
		NaN_3	0.25 g
		Store at 4°C.	

Homogenization Buffer

1 M KCl 17.5 ml 18 M H₂SO₄ 22.22 ml Add to H₂O to final volume of 400 ml. Ingredients for 100 ml of H.Bx for luciferase

and CAT.

PROCEDURE

Criss-Cross Serial Dilution Analysis

- Prepare antigen (Ag) (rat heart cytochrome c, Sigma C-7892) in PBSN by 1:2 serial dilution. Add 50 µl of Ag to each well of a row of a 96-well EIA microplate (Bio-Rad 224-0096). The highest concentrion (10 μ g/ml) to row A, the second highest concentration to row B and the lowest concentration (0 μ g/ml) to row H. Incubate at room temperature overnight.
- Rinse the coated plate with double distilled water three times.
- Add 150 μ l of blocking reagent to each well and incubate at room temperature for 30 min.
- Rinse the plate with double distilled water three times.
- Add 50 µl of blocking reagent to each wells except the wells in the first column.
- Add 100 µl of primary antibody (Ab) (mouse monoclonal Ab against rat cytochrome c, 6H2.B4, IgG 2a, K, 0.7 mg/ml from Dr. R. Jemmerson, 1:100 in blocking reagent) to the wells in the first column and incubate at room temperature for 2 hr.
- Rinse the plate with double distilled water three times.
- Add 50 µl of secondary Ab (goat anti-mouse IgG conjugated to horse radish peroxidase in blocking reagent, Axell #JGM035003 diluted in PBS-Tween, 1:5000 in blocking reagent) and incubate at room temperature for 2 hr.
- 9. Rinse the plate with double distilled water three times.
- 10. Add 75 μ l of blocking reagent and vortex and incubate at room temperature for 10 min.
- 11. Rinse the plate with double distilled water three times.
- 12. Add 100 µl of TMB substrate (Bio-Rad, 172-1066, mix A solution with B solution at 9:1 before use) and incubate at room temperature for 10 min.
- 13. Add 100 µl of 1 M H₂SO₄ and read absorbance at 450 nm in a microplate reader (Bio-Rad) using the mean of the row H values as zero.
- 14. Plot the data for each Ag dilution (A450 for Y-axis and log1/D for X-axis). The concentrations of Ag that gives a maximal A450 value would be appropriate for coating the plate. The dilution of primary Ab that

Direct Competitive ELISA (cytochrome c)

3:32 PM 9/15/09

Z. Yan

gives the 1/2 of the maximal reading at A450 would be used for sensitive detection of cytochrome c in the direct competitive ELISA.

Microplate coating

- 1. Add 400 μ l of cytochrome c (500 μ g/ml in H.Bx. for luciferase and CAT) to 50 ml of PBSN and the final concentration for cytochrome c is 4 μ g/ml.
- 2. Add 50 μ l of the Ag in PBSN to each well of a microplate and incubate at room temperature overnight. The coated plate can be stored at 4°C for several months.

Muscle homogenization

- 1. Weigh out ~100 mg frozen muscle while frozen and put into a 15 ml polyethylene tube (Sarstedt 60.541).
- 2. Add 10 ml/g 1X homogenization buffer (H.Bx for luciferase and CAT with 175 mM KCl).
- 3. When the muscle is thawed on ice, homogenize the sample at setting 7 with a Polytron homogenizer for 10" x 3 with 10" intervals in ice-water bath.
- 4. Freeze-thaw the samples three times using -80°C freezer or liquid nitrogen and ice.
- 5. Centrifuge the samples at 11,000 rpm (15,000 x g) for 15' at 4°C.
- 6. Transfer the supernatant to an eppendorf tube and store at -20°C.

ELISA

- 1. Rinse the coated plate with double distilled water three times.
- 2. Add 150 μ l of blocking reagent to each well and incubate at room temperature for 30 min.
- 3. Rinse the plate with double distilled water three times.
- 4. Prepare cytochrome c standard in homogenization buffer (100 ng/ μ l is the highest concentration and 2:3 series dilution for the rest 9 tubes and homogenization buffer as the 0 ng/ μ l control).
- 5. To wells in a NEW microplate, add 100 μ l of blocking reagent containing 1:9000 primary Ab and add 11.11 μ l of standard or sample in duplicates to each well. Incubate at room temperature for 30 min.
- 6. To coated well add 50 μ l of the above mixture or 50 μ l of blocking reagent (as negative control to zero the reading) and incubate at room temperature for 2 hr.
- 7. Rinse the plate with double distilled water three times.
- 8. Add 50 μ l of secondary Ab and incubate at room temperature for 2 hr.
- 9. Rinse the plate with double distilled water three times.
- 10. Add 75 µl of blocking reagent and vortex and incubate at room temperature for 10 min.
- 11. Rinse the plate with double distilled water three times.
- 12. Add 100 μ l of TMB substrate and incubate at room temperature for 10 min.
- 13. Add 100 µl of 1 M H₂SO₄ and read absorbance at 450 nm in a microplate reader.

REFERENCES

- 1 Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J. G. Seidman, John A. Smith, and Kevin Struhl. *Current Protocols in Molecular Biology*, Chapter 11: Immunology. John Wiley & Sons, Inc., 1994.
- 2. Jemmerson, R., C. Mueller, and D. Flaa. Differences in heavy chain amino acid sequences affecting the specificity of antibodies for variants of cytochrome c. *Molecular Immunology*. 30:1107-1114, 1993.
- 3. Holloszy, J. O. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. Journal of Biological Chemistry. 242:2278-2282, 1967.