Dr. Chappell's Publications
For a more complete list of publications, visit the following publication sites: PubMed
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and Is Upregulated during Hypoxia and Aging. Biomolecules. 2023 Apr 21;13(4):711. doi: 10.3390/biom13040711. PMID: 37189457; PMCID: PMC10136073.
Payne LB, Abdelazim H, Hoque M, Barnes A, Mironovova Z, Willi CE, Darden J, Jenkins-Houk C, Sedovy MW, Johnstone SR, Chappell JC. A Soluble Platelet-Derived Growth Factor Receptor-β Originates via Pre-mRNA Splicing in the Healthy Brain and is Differentially Regulated during Hypoxia and Aging. bioRxiv [Preprint]. 2023 Feb 4:2023.02.03.527005. doi: 10.1101/2023.02.03.527005. PMID: 36778261; PMCID: PMC9915746.
Abdelazim H, Payne LB, Nolan K, Paralkar K, Bradley V, Kanodia R, Gude R, Ward R, Monavarfeshani A, Fox MA, Chappell JC. Pericyte heterogeneity identified by 3D ultrastructural analysis of the microvessel wall. Front Physiol. 2022 Dec 16;13:1016382. doi: 10.3389/fphys.2022.1016382. PMID: 36589416; PMCID: PMC9800988.
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res. 2022 Dec 13:1-13. doi: 10.1159/000527469. Epub ahead of print. PMID: 36513042.
Willi CE, Abdelazim H, Chappell JC. Evaluating cell viability, capillary perfusion, and collateral tortuosity in an ex vivo mouse intestine fluidics model. Front Bioeng Biotechnol. 2022 Dec 9;10:1008481. doi: 10.3389/fbioe.2022.1008481. PMID: 36568288; PMCID: PMC9780384.
Payne LB, Tewari BP, Dunkenberger L, Bond S, Savelli A, Darden J, Zhao H, Willi C, Kanodia R, Gude R, Powell MD, Oestreich KJ, Sontheimer H, Dal-Pra S, Chappell JC. Pericyte Progenitor Coupling to the Emerging Endothelium During Vasculogenesis via Connexin 43. Arterioscler Thromb Vasc Biol. 2022 Feb 10:ATVBAHA121317324. doi: 10.1161/ATVBAHA.121.317324. Epub ahead of print. PMID: 35139658.
Payne LB, Darden J, Suarez-Martinez AD, Zhao H, Hendricks A, Hartland C, Chong D, Kushner EJ, Murfee WL, Chappell JC. Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integr Biol (Camb). 2021 Feb 27;13(2):31-43. doi: 10.1093/intbio/zyaa027. PMID: 33515222; PMCID: PMC7919101.
Hoque MM, Abdelazim H, Jenkins-Houk C, Wright D, Patel BM, Chappell JC. The cerebral microvasculature: Basic and clinical perspectives on stroke and glioma. Microcirculation. 2021 Apr;28(3):e12671. doi: 10.1111/micc.12671. Epub 2020 Nov 22. PMID: 33171539.
Payne LB, Tewari B, Dunkenberger L, Bond S, Savelli A, Darden J, Zhao H, Powell M, Oestreich K, Sontheimer H, Dal-Pra S, Chappell JC. Pericytes Directly Communicate with Emerging Endothelial Cells During Vasculogenesis. bioRxiv 2020.07.01.180752; (This article is a preprint and has not been certified by peer review.)
Payne LB, Hoque M, Houk C, Darden J, Chappell JC. Pericytes in Vascular Development. Curr. Tissue Microenviron. Rep. (2020). Invited Review. Currently Epub only.
Corliss BA, Ray HC, Doty RW, Mathews C, Sheybani N, Fitzgerald K, Prince R, Kelly-Goss MR, Murfee WL, Chappell JC, Owens GK, Yates PA, Peirce SM. Pericyte Bridges in Homeostasis and Hyperglycemia. Diabetes. 2020 Jul;69(7):1503-1517. doi: 10.2337/db19-0471. Epub 2020 Apr 22. PubMed PMID: 32321760; PubMed Central PMCID: PMC7306121.
Castro R, Taetzsch T, Vaughan SK, Godbe K, Chappell JC, Settlage RE, Valdez G. Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. Elife. 2020 Jun 25;9. doi: 10.7554/eLife.56935. PubMed PMID: 32584256; PubMed Central PMCID: PMC7316509.
Chappell JC, Darden J, Payne LB, Fink K, Bautch VL*. Blood Vessel Patterning on Retinal Astrocytes Requires Endothelial Flt-1 (VEGFR-1). J Dev Biol. 2019 Sep 7;7(3). pii: E18. doi: 10.3390/jdb7030018. PubMed PMID: 31500294; PubMed Central PMCID: PMC6787756.
Gorick CM, Chappell JC, Price RJ. Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci. 2019 Jun 24;20(12). pii: E3081. doi: 10.3390/ijms20123081. Review. PubMed PMID: 31238531; PubMed Central PMCID: PMC6627741.
Payne LB, Zhao H, James CC, Darden J, McGuire D, Taylor S, Smyth JW, Chappell JC. The pericyte microenvironment during vascular development. Microcirculation. 2019 May 7. doi: 10.1111/micc.12554. [Epub ahead of print] Invited Review. PubMed PMID:31066166.
Zhao H, Chappell JC. Microvascular bioengineering: a focus on pericytes. J Biol Eng. 2019 Mar 29;13:26. doi: 10.1186/s13036-019-0158-3. eCollection 2019. Invited Review. PubMed PMID: 30984287; PubMed Central PMCID: PMC6444752.
Darden J, Payne LB, Zhao H, Chappell JC. Excess vascular endothelial growth factor-A disrupts pericyte recruitment during blood vessel formation. Angiogenesis. 2019 Feb;22(1):167-183. doi: 10.1007/s10456-018-9648-z. Epub 2018 Sep 20. PubMed PMID: 30238211; PubMed Central PMCID: PMC6360133.
Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest. 2019 Feb 1;129(2):442-451. doi: 10.1172/JCI120855. Epub 2019 Jan 7. Invited Review. PubMed PMID: 30614813; PubMed Central PMCID: PMC6355237.
Zhao H, Darden J, Chappell JC. Establishment and characterization of an embryonic pericyte cell line. Microcirculation. 2018 Jul;25(5):e12461. doi: 10.1111/micc.12461. Epub 2018 Jun 7. PubMed PMID: 29770525.
Arreola A, Payne LB, Julian MH, de Cubas AA, Daniels AB, Taylor S, Zhao H, Darden J, Bautch VL, Rathmell WK*, Chappell JC*. Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch. JCI Insight. 2018 Feb
22;3(4). pii: 92193. doi: 10.1172/jci.insight.92193. eCollection 2018 Feb 22. PubMed PMID: 29467323; PubMed Central PMCID: PMC5916240.
Walpole J, Mac Gabhann F, Peirce SM, Chappell JC. Agent-based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. Microcirculation. 2017 Nov;24(8). doi: 10.1111/micc.12393. PubMed PMID: 28791758; PubMed Central PMCID: PMC5673505.
Chappell JC, Mouillesseaux KP, Bautch VL. (2013). Flt-1 (VEGFR-1) is Essential for the VEGF-Notch Feedback Loop during Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 33(8).
Chappell JC, Wiley DM, Bautch VL. (2012). How blood vessel networks are made and measured. Cells Tissues and Organs 195(1).
Chappell JC, Wiley DM, Bautch VL. (2011). Regulation of blood vessel sprouting. Seminars in Cell & Developmental Biology 22(9): 1005-1111.
Hashambhoy YK, Chappell JC, Peirce SM, Bautch VL, Gabhann FM. (2011). Computational modeling of interacting VEGF and soluble VEGF receptor concentration gradients. Frontiers in Physiology 2(62).
Randhawa PK, Rylova S, Heinz JY, Kiser S, Fried JH, Dunworth WP, Anderson AL, Barber AT, Chappell JC, Roberts DM, Bautch VL. (2011). The Ras activator RasGRP3 mediates diabetes-induced embryonic defects and affects endothelial cell migration. Circulation Research 108(10): 1199-1208.
Chappell JC, Bautch VL. (2010). Vascular Development – Genetic Mechanisms and Links to Vascular Disease. Current Topics in Developmental Biology 90: 43-72.
Chappell JC, Taylor SM, Ferrara N, Bautch VL. (2009). Local guidance of emerging vessel sprouts requires soluble Flt-1. Development Cell 17(3): 377-86.
Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ. (2008). Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small 4(10): 1769-77.
Kappas NC, Zeng G, Chappell JC, Kearney JB, Hazarika S, Patterson C, Annex B, Bautch VL. (2008). The VEGF receptor flt-1 spatially modulates flk-1 signaling and blood vessel branching. Journal of Cell Biology 181(5): 847-58.
Chappell JC, Song J, Klibanov AL, Price RJ. (2008). Ultrasonic Microbubble Destruction Stimulates Therapeutic Arteriogenesis via CD18-Dependent Recruitment of Bone-Marrow Derived Cells. Arteriosclerosis, Thrombosis, and Vascular Biology 28(6): 1117-22.
Chappell JC, Price RJ. (2006). Targeted therapeutic applications of acoustically active microspheres in the microcirculation. Microcirculation 13(1): 57-60.
Chappell JC, Klibanov AL, Price RJ. (2005). Ultrasound-microbubble-induced neovascularization in mouse skeletal muscle. Ultrasound in Medicine & Biology 31(10): 1411-22.
Song J, Chappell JC, Qi M, Van Gieson EJ, Kaul S, Price RJ. (2002). Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. Journal of the American College of Cardiology 39(4): 726-31.