Virginia Tech® home

Sheng Lab

Insert your title here

Led by principal investigator Zhi Sheng, Ph.D., researchers in the Sheng Laboratory are particularly interested in glioblastoma multiforme (GBM). GBM is a lethal and incurable brain cancer, and it often recurs after conventional therapies such as resection, radiation therapy, and chemotherapy. Recent research findings from the Sheng Laboratory indicate that PIK3CB (a catalytic subunit of PI3K) confers a prognostic significance in recurrent GBM. Targeting PIK3CB—but not other PI3K subunits—selectively inhibits cell viability, making this gene a potential therapeutic target for GBM. Ongoing and future research focuses on elucidating the mechanism underlying the selectivity of targeting PI3K in GBM and developing PIK3CB-based therapies tailored to GBM patients with a high risk of recurrence.

By using a large-scale RNA interference screening, the Sheng Lab identified 82 genes (termed autophagy-regulating genes, ARGs) that regulate autophagy in cancer. Of particular interest to the researchers is an ARG named long non-coding RNA 00467, which is an RNA gene with no protein-coding potential. The scientists are currently probing the molecular underpinnings of noncoding RNA-regulated autophagy in cancer and exploring the therapeutic potential of this new autophagy regulatory pathway in antagonizing drug resistance.

The Sheng Lab also collaborates with Dr. Robert Gourdie, who developed the FDA-approved wound-healing drug ACT1 that targets connexin 43. The scientists repurposed ACT1 into a possible treatment to circumvent the resistance of GBM to temozolomide, a DNA alkylating agent used as the front line treatment. Future studies include unveiling the molecular mechanism of temozolomide sensitization by ACT1 and implementing ACT1 treatment into the clinic.

Meet the Lab

  

Volunteers

Chinkal Patel, B.S., Psychology, University of Connecticut

  

Undergraduates

  • Pauline Etchi, Biology, Hollins University

Lab News