In Person Special Seminar: Cardiac Protein O-GlcNAcylation Induces Cardiac Hypertrophy and Increases Risk of Heart Failure
Adam Wende, Ph.D., FAHA
Associate Professor
Division of Molecular and Cellular Pathology
Department of Pathology
Heersink School of Medicine
University of Alabama at Birmingham
In Person Seminar: Cardiac Protein O-GlcNAcylation Induces Cardiac Hypertrophy and Increases Risk of Heart Failure
Date: May 15, 2023
Time: 11 a.m.
About this Seminar
The severity and development of cardiovascular disease can be affected by lifestyle and metabolic diseases, which can impact various mechanisms, including post-translational modifications (PTM). A specific PTM, known as protein O-linked β-N acetylglucosamine modification (O-GlcNAc), has been linked to both physiological responses and pathological progression of heart failure. Dr. Wende’s lab’s work aims to test whether sustained O-GlcNAc of proteins in cardiomyocytes contributes to cardiac adaptations or is sufficient to progress toward pathophysiology. Using a novel transgenic mouse model to overexpress a naturally occurring dominant-negative O-GlcNAcase (dnOGA) in an inducible and cardiomyocyte-specific manner (dnOGAh), the lab induced dnOGA in male and female 8-10-weeks-old mice, and examined the effects of 2-weeks (2wk) and 24-weeks (24wk) dnOGA overexpression (which leads to a 1.8-fold increase in O-GlcNAc levels). A 2wk increase in protein O-GlcNAc levels did not impact heart weight or function; however, 24wk of elevated protein O-GlcNAc led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction compared to Control (Con; single transgenic mice). Others have shown in clinical studies that diabetes increases cardiac disease risk, even after patients return to tight glycemic control. Dr. Wende hypothesizes that an increase in O-GlcNAc (known to occur in diabetes) is sufficient to exacerbate adverse cardiac remodeling under subsequent pressure-overload. He proposes that this is due to epigenetic modifications causing persistent changes in gene expression. Using the model described above the lab subjected Con and dnOGAh mice to 2-wk induction and subsequent 2-wk washout, followed by transverse-aortic constriction (TAC) or Sham surgery. In both Con+TAC and dnOGA+TAC vs. Sham groups, systolic function decreased, and ventricular weight is increased. Interestingly, the lab sees further exacerbation of cardiac hypertrophy and pulmonary edema between dnOGA+TAC vs. Con+TAC groups. These results support the hypothesis that a transient increase in cardiac O-GlcNAc levels is sufficient to increase susceptibility to subsequent cardiac pathology.
You May Also Be Interested In...
-
Home ItemDisability Identity, Inclusivity & Representation in Research , home
Feb. 14, 2025, 11:00 a.m. | Anjali Forber-Pratt, Ph.D., Director of Research, American Association on Health and Disability | Co-Sponsored by the Fralin Biomedical Research Institute Center for Human Neuroscience Research
-
Home ItemHow Big Med Drives Rising Healthcare Costs and What to Do About It , home
Feb. 20, 2025, 5:30 p.m. (Reception at 5 p.m.) | Vivian Ho, Ph.D., James A. Baker III Institute Chair in Health Economics, Baker Institute for Public Policy, Rice University | Maury Strauss Distinguished Public Lecture
-
Home ItemAddictive Nicotine and Stress Induce Convergent Mechanisms That Increase Alcohol Self‐administration , home
Feb. 21, 2025, 11:00 a.m. | John Dani, Ph.D., Professor of Neurological Sciences, Chair, Department of Neuroscience, Scientific Director, UPENN, CNS Consortium, Perlman School of Medicine, University of Pennsylvania | Co-Sponsored by the Fralin Biomedical Research Institute Center for Human Neuroscience Research
-
Home ItemExploring the Functional Role of Gene Variation in Nicotine and Alcohol Abuse , home
Feb. 21, 2025, 1 p.m. | Mariella De Biasi, Ph.D., Professor, Director, Program for Cholingeric Mechanisms in Addiction, Perlman School of Medicine, University of Pennsylvania | Co-Sponsored by the Fralin Biomedical Research Institute Center for Human Neuroscience Research
-
Home ItemThe Relationship between Mitochondrial Function and Heart Failure , home
Feb. 28, 2025, 11:00 a.m. | Rong Tian, M.D., Ph.D., Professor, Department of Anesthesiology and Bioengineering, University of Washington | Co-Sponsored by the Fralin Biomedical Research Institute Center for Vascular and Heart Research
-
Home ItemSuicide by Firearm in the United States: A Collaborative Path for Prevention , home
March 6, 2025, 5:30 p.m. (Reception at 5 p.m.) | Marian Betz, M.D., M.P.H. Professor, Departments of Epidemiology and Emergency Medicine, Deputy Director, Injury & Violence Prevention Center, University of Colorado School of Public Health; Member, National Academy of Medicine | Maury Strauss Distinguished Public Lecture